Home > Publications database > Unveiling genetic signatures of immune response in immune-related diseases through single-cell eQTL analysis across diverse conditions. > print |
001 | 303377 | ||
005 | 20250810021957.0 | ||
024 | 7 | _ | |a 10.1038/s41467-025-61192-4 |2 doi |
024 | 7 | _ | |a pmid:40759647 |2 pmid |
024 | 7 | _ | |a altmetric:179980022 |2 altmetric |
037 | _ | _ | |a DKFZ-2025-01626 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Zhang, Zhenhua |0 0000-0002-1781-7127 |b 0 |
245 | _ | _ | |a Unveiling genetic signatures of immune response in immune-related diseases through single-cell eQTL analysis across diverse conditions. |
260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1754484412_17249 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Deciphering the intricate regulatory mechanisms underlying biological processes holds promise for elucidating how genetic variants contribute to immune-related disorders. We map genetic effects on gene expression (expression quantitative trait locus, eQTL) using single-cell transcriptomes of 152 samples from 38 healthy individuals, covering baseline state and lipopolysaccharide challenge either before or after Bacillus Calmette-Guerin vaccination. Interestingly, we uncover a monocyte eQTL linked to the LCP1, shedding light on inter-individual variations in trained immunity. Furthermore, we elucidate genetic and epigenetic regulatory networks of CD55 and SLFN5. Of note, our results support the pivotal roles of SLFN5 in COVID-19 pathogenesis by incorporating disease-associated loci, chromatin accessibility, and transcription factor binding affinities, aligning with the established functions of SLFN5 in restricting virus replication during viral infection. Our study provides a paradigm to decipher genetic underpinnings of complex traits by integrating single-cell eQTLs with multi-omics data from patients and public databases. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Quantitative Trait Loci: genetics |2 MeSH |
650 | _ | 2 | |a Single-Cell Analysis: methods |2 MeSH |
650 | _ | 2 | |a COVID-19: immunology |2 MeSH |
650 | _ | 2 | |a COVID-19: genetics |2 MeSH |
650 | _ | 2 | |a COVID-19: virology |2 MeSH |
650 | _ | 2 | |a SARS-CoV-2: immunology |2 MeSH |
650 | _ | 2 | |a Transcriptome |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Gene Regulatory Networks |2 MeSH |
650 | _ | 2 | |a Monocytes: immunology |2 MeSH |
650 | _ | 2 | |a Monocytes: metabolism |2 MeSH |
650 | _ | 2 | |a Immune System Diseases: genetics |2 MeSH |
650 | _ | 2 | |a Immune System Diseases: immunology |2 MeSH |
650 | _ | 2 | |a Adult |2 MeSH |
650 | _ | 2 | |a Immunity: genetics |2 MeSH |
650 | _ | 2 | |a Genetic Predisposition to Disease |2 MeSH |
700 | 1 | _ | |a Li, Wenchao |0 0000-0002-7956-0742 |b 1 |
700 | 1 | _ | |a Zhan, Qiuyao |b 2 |
700 | 1 | _ | |a Aillaud, Michelle |b 3 |
700 | 1 | _ | |a Botey-Bataller, Javier |0 0000-0003-3512-3150 |b 4 |
700 | 1 | _ | |a Zoodsma, Martijn |0 0000-0003-3636-2209 |b 5 |
700 | 1 | _ | |a Ter Horst, Rob |0 0000-0003-0576-5873 |b 6 |
700 | 1 | _ | |a Joosten, Leo A B |0 0000-0001-6166-9830 |b 7 |
700 | 1 | _ | |a Bock, Christoph |0 0000-0001-6091-3088 |b 8 |
700 | 1 | _ | |a Schulte, Leon N |0 0000-0001-6814-9344 |b 9 |
700 | 1 | _ | |a Xu, Cheng-Jian |0 0000-0003-1586-4672 |b 10 |
700 | 1 | _ | |a Netea, Mihai G |0 0000-0003-2421-6052 |b 11 |
700 | 1 | _ | |a Bonder, Marc Jan |0 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce |b 12 |
700 | 1 | _ | |a Li, Yang |0 0000-0003-4022-7341 |b 13 |
773 | _ | _ | |a 10.1038/s41467-025-61192-4 |g Vol. 16, no. 1, p. 7134 |0 PERI:(DE-600)2553671-0 |n 1 |p 7134 |t Nature Communications |v 16 |y 2025 |x 2041-1723 |
909 | C | O | |o oai:inrepo02.dkfz.de:303377 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-He78)B260-20160331 |k B260 |l B260 Bioinformatik der Genomik und Systemgenetik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B260-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|