001     303404
005     20250808114431.0
024 7 _ |a 10.1016/j.media.2025.103716
|2 doi
024 7 _ |a pmid:40769094
|2 pmid
024 7 _ |a 1361-8415
|2 ISSN
024 7 _ |a 1361-8431
|2 ISSN
024 7 _ |a 1361-8423
|2 ISSN
037 _ _ |a DKFZ-2025-01640
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Das, Adrito
|b 0
245 _ _ |a PitVis-2023 challenge: Workflow recognition in videos of endoscopic pituitary surgery.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754571637_26626
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The field of computer vision applied to videos of minimally invasive surgery is ever-growing. Workflow recognition pertains to the automated recognition of various aspects of a surgery, including: which surgical steps are performed; and which surgical instruments are used. This information can later be used to assist clinicians when learning the surgery or during live surgery. The Pituitary Vision (PitVis) 2023 Challenge tasks the community to step and instrument recognition in videos of endoscopic pituitary surgery. This is a particularly challenging task when compared to other minimally invasive surgeries due to: the smaller working space, which limits and distorts vision; and higher frequency of instrument and step switching, which requires more precise model predictions. Participants were provided with 25-videos, with results presented at the MICCAI-2023 conference as part of the Endoscopic Vision 2023 Challenge in Vancouver, Canada, on 08-Oct-2023. There were 18-submissions from 9-teams across 6-countries, using a variety of deep learning models. The top performing model for step recognition utilised a transformer based architecture, uniquely using an autoregressive decoder with a positional encoding input. The top performing model for instrument recognition utilised a spatial encoder followed by a temporal encoder, which uniquely used a 2-layer temporal architecture. In both cases, these models outperformed purely spatial based models, illustrating the importance of sequential and temporal information. This PitVis-2023 therefore demonstrates state-of-the-art computer vision models in minimally invasive surgery are transferable to a new dataset. Benchmark results are provided in the paper, and the dataset is publicly available at: https://doi.org/10.5522/04/26531686.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Endoscopic vision
|2 Other
650 _ 7 |a Instrument recognition
|2 Other
650 _ 7 |a Step recognition
|2 Other
650 _ 7 |a Surgical AI
|2 Other
650 _ 7 |a Surgical vision
|2 Other
650 _ 7 |a Workflow analysis
|2 Other
700 1 _ |a Khan, Danyal Z
|b 1
700 1 _ |a Psychogyios, Dimitrios
|b 2
700 1 _ |a Zhang, Yitong
|b 3
700 1 _ |a Hanrahan, John G
|b 4
700 1 _ |a Vasconcelos, Francisco
|b 5
700 1 _ |a Pang, You
|b 6
700 1 _ |a Chen, Zhen
|b 7
700 1 _ |a Wu, Jinlin
|b 8
700 1 _ |a Zou, Xiaoyang
|b 9
700 1 _ |a Zheng, Guoyan
|b 10
700 1 _ |a Qayyum, Abdul
|b 11
700 1 _ |a Mazher, Moona
|b 12
700 1 _ |a Razzak, Imran
|b 13
700 1 _ |a Li, Tianbin
|b 14
700 1 _ |a Ye, Jin
|b 15
700 1 _ |a He, Junjun
|b 16
700 1 _ |a Płotka, Szymon
|b 17
700 1 _ |a Kaleta, Joanna
|b 18
700 1 _ |a Yamlahi, Amine
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Jund, Antoine
|0 P:(DE-He78)7daa70898accb131fba9ffb9fd3265f2
|b 20
700 1 _ |a Godau, Patrick
|0 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
|b 21
|u dkfz
700 1 _ |a Kondo, Satoshi
|b 22
700 1 _ |a Kasai, Satoshi
|b 23
700 1 _ |a Hirasawa, Kousuke
|b 24
700 1 _ |a Rivoir, Dominik
|b 25
700 1 _ |a Speidel, Stefanie
|b 26
700 1 _ |a Pérez, Alejandra
|b 27
700 1 _ |a Rodriguez, Santiago
|b 28
700 1 _ |a Arbeláez, Pablo
|b 29
700 1 _ |a Stoyanov, Danail
|b 30
700 1 _ |a Marcus, Hani J
|b 31
700 1 _ |a Bano, Sophia
|b 32
773 _ _ |a 10.1016/j.media.2025.103716
|g Vol. 106, p. 103716 -
|0 PERI:(DE-600)1497450-2
|p 103716
|t Medical image analysis
|v 106
|y 2025
|x 1361-8415
909 C O |o oai:inrepo02.dkfz.de:303404
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)7daa70898accb131fba9ffb9fd3265f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)77a2a5b07dcbd46277a18a32372ea154
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21