001     303447
005     20250812114505.0
024 7 _ |a 10.1002/mp.17999
|2 doi
024 7 _ |a pmid:40781834
|2 pmid
024 7 _ |a pmc:PMC12334874
|2 pmc
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
037 _ _ |a DKFZ-2025-01660
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schorling, Constantin
|0 P:(DE-He78)546d469c1c6d01f821696cc15db2ed4e
|b 0
|e First author
|u dkfz
245 _ _ |a Experimental investigation of oxygen diffusion in the peak and valley region of minibeam patterns during x-ray irradiation.
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754912942_16954
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E041#LA:E041#
520 _ _ |a Minibeam radiotherapy has demonstrated its potential to reduce normal tissue toxicity while maintaining tumor control. However, the underlying mechanisms behind this phenomenon remain unknown. Recent theoretical studies suggest a dose surrogate by diffusion of H 2 O 2 ${\rm H}_2{\rm O}_2$ into the valley regions.The aim of this study is to experimentally investigate oxygen depletion and diffusion upon minibeam (MB) irradiation.A 3D-printed water phantom with four sensors was developed to enable the real-time, simultaneous measurement of oxygen concentration in the peak and valley. Water with 0%-11% O 2 ${\rm O}_2$ and 0.1%/5.0% CO 2 ${\rm CO}_2$ was irradiated with broad beam (BB) and MB characterized by peak and valley widths of 2 mm × $\times$ 2 mm and 0.5 mm × $\times$ 2 mm. The depletion was further compared in other chemical environments.The oxygen depletion rates per dose in hypoxic water in the valley regions were found to be 3-7 times higher compared to the peaks or BB. This observation was found to be independent of oxygen concentration above 2 %, indicating oxygen depletion saturation. For MB, diffusion between peaks and valleys was observed. After a certain period, an equilibrium between diffusion and dose rate differences was established. Glutathione and HEPES as a medium increased the depletion further and distinguished MB from BB.A novel way of simultaneously measuring oxygen in the peak and valley of the MB dose pattern was introduced. The observed oxygen depletion saturation and diffusion between the peaks and valleys suggest the importance of oxygen in spatially fractionated radiotherapy studies, which is even greater for 5 mM glutathione compared to water.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a minibeam irradiation
|2 Other
650 _ 7 |a oxygen depletion measurements
|2 Other
650 _ 7 |a spatial fractionation
|2 Other
650 _ 7 |a Oxygen
|0 S88TT14065
|2 NLM Chemicals
650 _ 7 |a Water
|0 059QF0KO0R
|2 NLM Chemicals
650 _ 2 |a Oxygen: metabolism
|2 MeSH
650 _ 2 |a Diffusion
|2 MeSH
650 _ 2 |a X-Rays
|2 MeSH
650 _ 2 |a Phantoms, Imaging
|2 MeSH
650 _ 2 |a Water: chemistry
|2 MeSH
700 1 _ |a Rauth, Evelyn
|0 P:(DE-He78)2dcfd964503806e96ccd1124c5beadf8
|b 1
|u dkfz
700 1 _ |a Stengl, Christina
|0 P:(DE-He78)5d3fd2061719ec17ba3c894c81dbde89
|b 2
|u dkfz
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.17999
|g Vol. 52, no. 8, p. e17999
|0 PERI:(DE-600)1466421-5
|n 8
|p e17999
|t Medical physics
|v 52
|y 2025
|x 0094-2405
909 C O |o oai:inrepo02.dkfz.de:303447
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)546d469c1c6d01f821696cc15db2ed4e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)2dcfd964503806e96ccd1124c5beadf8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)5d3fd2061719ec17ba3c894c81dbde89
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
920 2 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 1
920 0 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21