000303468 001__ 303468
000303468 005__ 20250817022108.0
000303468 0247_ $$2doi$$a10.1038/s41596-025-01226-9
000303468 0247_ $$2pmid$$apmid:40790259
000303468 0247_ $$2ISSN$$a1754-2189
000303468 0247_ $$2ISSN$$a1750-2799
000303468 0247_ $$2altmetric$$aaltmetric:180223509
000303468 037__ $$aDKFZ-2025-01665
000303468 041__ $$aEnglish
000303468 082__ $$a610
000303468 1001_ $$0P:(DE-He78)6f39fefbb14edfdc43ad49e396f90b87$$aEid, Mohammad$$b0$$eFirst author
000303468 245__ $$aChemogenetic detection and quantitation of H2O2 in living cells.
000303468 260__ $$aBasingstoke$$bNature Publishing Group$$c2025
000303468 3367_ $$2DRIVER$$aarticle
000303468 3367_ $$2DataCite$$aOutput Types/Journal article
000303468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755068814_13043$$xReview Article
000303468 3367_ $$2BibTeX$$aARTICLE
000303468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000303468 3367_ $$00$$2EndNote$$aJournal Article
000303468 500__ $$aDKFZ-ZMBH Alliance / #EA:A160#LA:A160#
000303468 520__ $$aHydrogen peroxide (H2O2) is a natural product of aerobic metabolism. It acts as a signaling molecule and regulates fundamental cellular functions. However, it has remained difficult to measure intracellular H2O2 with high specificity and in a quantitative manner. Here, we present a detailed protocol for a chemogenetic method that enables the detection and quantitation of H2O2 in living cells by converting intracellular H2O2 into fluorescent or luminescent signals. This is achieved by expressing the engineered heme peroxidase APEX2 in cells and subcellular locations of interest and by providing an appropriate fluorogenic or luminogenic substrate from outside. This method differs fundamentally from previously developed genetically encoded H2O2 probes; those are reversible and measure the balance between probe thiol oxidation and reduction. By contrast, APEX2 turns over its substrate irreversibly and therefore directly measures endogenous H2O2 availability. Our detailed step-by-step protocol covers the generation of APEX2-expressing cell lines, the implementation of fluorescent and luminescent measurements and examples for application. Ectopic expression of APEX2 can be achieved in 3 days, while the actual measurements typically require 1-2 h. This protocol is intended for entry-level scientists.
000303468 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000303468 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000303468 7001_ $$0P:(DE-He78)387d4f13f0c0f8a92fee635038e7d424$$aBarayeu, Uladzimir$$b1
000303468 7001_ $$0P:(DE-He78)7f55a0ed8b021080de00960cc73768fb$$aDick, Tobias$$b2$$eLast author$$udkfz
000303468 773__ $$0PERI:(DE-600)2244966-8$$a10.1038/s41596-025-01226-9$$pnn$$tNature protocols$$vnn$$x1754-2189$$y2025
000303468 909CO $$ooai:inrepo02.dkfz.de:303468$$pVDB
000303468 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6f39fefbb14edfdc43ad49e396f90b87$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000303468 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)387d4f13f0c0f8a92fee635038e7d424$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000303468 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7f55a0ed8b021080de00960cc73768fb$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000303468 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000303468 9141_ $$y2025
000303468 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
000303468 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-18$$wger
000303468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PROTOC : 2022$$d2024-12-18
000303468 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT PROTOC : 2022$$d2024-12-18
000303468 9202_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000303468 9200_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000303468 9201_ $$0I:(DE-He78)A160-20160331$$kA160$$lA160 Redoxregulation$$x0
000303468 980__ $$ajournal
000303468 980__ $$aVDB
000303468 980__ $$aI:(DE-He78)A160-20160331
000303468 980__ $$aUNRESTRICTED