000303503 001__ 303503
000303503 005__ 20250815114533.0
000303503 0247_ $$2doi$$a10.1007/s10654-025-01285-y
000303503 0247_ $$2pmid$$apmid:40801988
000303503 0247_ $$2ISSN$$a0393-2990
000303503 0247_ $$2ISSN$$a1573-7284
000303503 037__ $$aDKFZ-2025-01694
000303503 041__ $$aEnglish
000303503 082__ $$a610
000303503 1001_ $$0P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07$$aXie, Ruijie$$b0$$eFirst author$$udkfz
000303503 245__ $$aCirculating inflammation-related proteome improves cardiovascular risk prediction. Results from two large European cohort studies.
000303503 260__ $$a[Cham]$$bSpringer Nature Switzerland AG$$c2025
000303503 3367_ $$2DRIVER$$aarticle
000303503 3367_ $$2DataCite$$aOutput Types/Journal article
000303503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755241890_8665
000303503 3367_ $$2BibTeX$$aARTICLE
000303503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000303503 3367_ $$00$$2EndNote$$aJournal Article
000303503 500__ $$a#EA:C070#LA:C070# / epub
000303503 520__ $$aInflammation plays a crucial role in cardiovascular disease (CVD), but the value of inflammation-related proteins in predicting major adverse cardiovascular events (MACE) is unclear. This study evaluated whether incorporating inflammation-related proteins into the SCORE2 model improves 10-year MACE risk prediction.This study included 47,382 participants from the UK Biobank and 4,135 participants from the German ESTHER study without prior CVD or diabetes. We tested C-reactive protein (CRP) and 73 inflammation-related proteins measured with Olink® panels. Biomarker selection was performed using least absolute shrinkage and selection operator (LASSO) regression with bootstrapping separately for males and females. Selected proteins were added to the SCORE2 model variables. Model performance was evaluated using Harrell's C-index, net reclassification index (NRI), and integrated discrimination index (IDI).Seven inflammation-related proteins but not CRP were selected, including two for both sexes, three specifically for males, and two specifically for females. Incorporating these proteins significantly improved the C-index (95% confidence interval (95%CI)) of the refitted SCORE2 model from 0.716 (0.698, 0.734) to 0.750 (0.732, 0.768) in internal validation in the UK Biobank and from 0.677 (0.644, 0.710) to 0.713 (0.681, 0.745) in external validation in the ESTHER study. The NRI with 95%CI was 12.4% (5.2%, 16.3%) in internal validation and 4.2% (0.5%, 23.6%) in external validation. The IDI also improved significantly.Incorporating inflammation-related proteins into the SCORE2 model significantly improves the prediction of 10-year MACE risk among individuals without prior CVD or diabetes. Measuring these proteins may enhance risk stratification in clinical practice.
000303503 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000303503 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000303503 650_7 $$2Other$$aCardiovascular disease
000303503 650_7 $$2Other$$aInflammation
000303503 650_7 $$2Other$$aProteins
000303503 650_7 $$2Other$$aProteomics
000303503 650_7 $$2Other$$aRisk prediction
000303503 7001_ $$0P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780$$aSha, Sha$$b1$$udkfz
000303503 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b2$$udkfz
000303503 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b3$$eLast author$$udkfz
000303503 773__ $$0PERI:(DE-600)2004992-4$$a10.1007/s10654-025-01285-y$$pnn$$tEuropean journal of epidemiology$$vnn$$x0393-2990$$y2025
000303503 909CO $$ooai:inrepo02.dkfz.de:303503$$pVDB
000303503 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7089188e1b7bdb788ba48ba96f21df07$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000303503 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1d6f6305a65e2f7de2c7fbffbae83780$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000303503 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000303503 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000303503 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000303503 9141_ $$y2025
000303503 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-01$$wger
000303503 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000303503 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000303503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J EPIDEMIOL : 2022$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000303503 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEUR J EPIDEMIOL : 2022$$d2025-01-01
000303503 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie der Krebsfrüherkennung$$x0
000303503 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie der Krebsfrüherkennung$$x0
000303503 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie der Krebsfrüherkennung$$x0
000303503 980__ $$ajournal
000303503 980__ $$aVDB
000303503 980__ $$aI:(DE-He78)C070-20160331
000303503 980__ $$aUNRESTRICTED