Home > Publications database > HIBRID: histology-based risk-stratification with deep learning and ctDNA in colorectal cancer. > print |
001 | 303650 | ||
005 | 20250824022537.0 | ||
024 | 7 | _ | |a 10.1038/s41467-025-62910-8 |2 doi |
024 | 7 | _ | |a pmid:40813777 |2 pmid |
024 | 7 | _ | |a pmc:PMC12354865 |2 pmc |
024 | 7 | _ | |a altmetric:180317078 |2 altmetric |
037 | _ | _ | |a DKFZ-2025-01714 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Loeffler, Chiara M L |b 0 |
245 | _ | _ | |a HIBRID: histology-based risk-stratification with deep learning and ctDNA in colorectal cancer. |
260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1755524094_15341 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Although surgical resection is the standard therapy for stage II/III colorectal cancer, recurrence rates exceed 30%. Circulating tumor DNA (ctNDA) detects molecular residual disease (MRD), but lacks spatial and tumor microenvironment information. Here, we develop a deep learning (DL) model to predict disease-free survival from hematoxylin & eosin stained whole slide images in stage II-IV colorectal cancer. The model is trained on the DACHS cohort (n = 1766) and validated on the GALAXY cohort (n = 1404). In GALAXY, the DL model categorizes 304 patients as DL high-risk and 1100 as low-risk (HR 2.31; p < 0.005). Combining DL scores with MRD status improves prognostic stratification in both MRD-positive (HR 1.58; p < 0.005) and MRD-negative groups (HR 2.1; p < 0.005). Notably, MRD-negative patients predicted as DL high-risk benefit from adjuvant chemotherapy (HR 0.49; p = 0.01) vs. DL low-risk (HR = 0.92; p = 0.64). Combining ctDNA with DL-based histology analysis significantly improves risk stratification, with the potential to improve follow-up and personalized adjuvant therapy decisions. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Bando, Hideaki |0 0000-0001-5041-2765 |b 1 |
700 | 1 | _ | |a Sainath, Srividhya |b 2 |
700 | 1 | _ | |a Muti, Hannah Sophie |b 3 |
700 | 1 | _ | |a Jiang, Xiaofeng |0 0000-0002-3716-8232 |b 4 |
700 | 1 | _ | |a van Treeck, Marko |b 5 |
700 | 1 | _ | |a Reitsam, Nic Gabriel |0 0000-0002-0070-3158 |b 6 |
700 | 1 | _ | |a Carrero, Zunamys I |b 7 |
700 | 1 | _ | |a Meneghetti, Asier Rabasco |0 0000-0002-1508-9410 |b 8 |
700 | 1 | _ | |a Nishikawa, Tomomi |b 9 |
700 | 1 | _ | |a Misumi, Toshihiro |b 10 |
700 | 1 | _ | |a Mishima, Saori |b 11 |
700 | 1 | _ | |a Kotani, Daisuke |0 0000-0002-4196-555X |b 12 |
700 | 1 | _ | |a Taniguchi, Hiroya |0 0000-0003-1407-6682 |b 13 |
700 | 1 | _ | |a Takemasa, Ichiro |b 14 |
700 | 1 | _ | |a Kato, Takeshi |b 15 |
700 | 1 | _ | |a Oki, Eiji |0 0000-0002-9763-9366 |b 16 |
700 | 1 | _ | |a Tanwei, Yuan |0 0000-0001-7387-6327 |b 17 |
700 | 1 | _ | |a Durgesh, Wankhede |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Foersch, Sebastian |0 0000-0002-4740-6900 |b 19 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 20 |u dkfz |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 21 |u dkfz |
700 | 1 | _ | |a Nakamura, Yoshiaki |0 0000-0002-5241-6855 |b 22 |
700 | 1 | _ | |a Yoshino, Takayuki |0 0000-0002-0489-4756 |b 23 |
700 | 1 | _ | |a Kather, Jakob Nikolas |b 24 |
773 | _ | _ | |a 10.1038/s41467-025-62910-8 |g Vol. 16, no. 1, p. 7561 |0 PERI:(DE-600)2553671-0 |n 1 |p 7561 |t Nature Communications |v 16 |y 2025 |x 2041-1723 |
909 | C | O | |o oai:inrepo02.dkfz.de:303650 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 17 |6 0000-0001-7387-6327 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 18 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 20 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 21 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|