| Home > Publications database > Methylation-based alcohol consumption scores as prognostic biomarkers in colorectal cancer: Insights from a population-based cohort. > print |
| 001 | 303956 | ||
| 005 | 20251023094053.0 | ||
| 024 | 7 | _ | |a 10.1002/ijc.70086 |2 doi |
| 024 | 7 | _ | |a pmid:40827617 |2 pmid |
| 024 | 7 | _ | |a 0020-7136 |2 ISSN |
| 024 | 7 | _ | |a 1097-0215 |2 ISSN |
| 024 | 7 | _ | |a altmetric:180496368 |2 altmetric |
| 037 | _ | _ | |a DKFZ-2025-01731 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Yuan, Tanwei |0 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |b 0 |e First author |u dkfz |
| 245 | _ | _ | |a Methylation-based alcohol consumption scores as prognostic biomarkers in colorectal cancer: Insights from a population-based cohort. |
| 260 | _ | _ | |a Bognor Regis |c 2025 |b Wiley-Liss |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1761205212_2347373 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a #EA:C070#LA:C070# / Volume 157, Issue 12 pp. 2521-2531 |
| 520 | _ | _ | |a Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, with alcohol consumption implicated in its etiology. However, alcohol's prognostic impact on CRC survival is unclear, and self-reported intake is limited by bias. This population-based cohort study evaluated blood DNA methylation-based alcohol scores as objective prognostic tools in 2,129 CRC patients from Germany's DACHS study (2003-2021; median follow-up: 10 years). Participants were recruited from 22 hospitals in Southwest Germany, including non-metastatic (n = 1757) and metastatic (n = 372) patients with complete methylation and alcohol data. All three assessed methylation scores (3-CpG, 450-CpG, 144-CpG) correlated with self-reported lifetime/recent alcohol intake (Spearman's r: 0.29-0.36; p < 0.0001), particularly recent consumption. In non-metastatic patients, self-reported alcohol consumption showed a J-shaped mortality risk, with elevated risks in heavy drinkers and abstainers. A similar dose-response pattern was observed for the 3-CpG methylation score, which showed consistent and robust associations with increased overall mortality (adjusted hazard ratio [aHR] per standard deviation increase: 1.18, 95% CI: 1.11-1.25), non-CRC-related mortality (1.22, 1.13-1.32), and CRC-specific mortality (1.12, 1.00-1.25). The 450-CpG score was associated with overall mortality (1.07, 1.00-1.15), non-CRC-related mortality (1.14, 1.05-1.23), and alcohol consumption-related mortality (1.59, 1.17-2.16). These findings highlight the potential utility of DNA methylation-based alcohol scores, especially the 3-CpG and the 450-CpG scores, as prognostic tools for CRC outcomes. Such biomarkers may provide a more objective measure of alcohol exposure and complement self-reported data in risk stratification and clinical decision-making, though further validation is warranted before clinical implementation. |
| 536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
| 650 | _ | 7 | |a DNA methylation |2 Other |
| 650 | _ | 7 | |a alcohol consumption |2 Other |
| 650 | _ | 7 | |a colorectal cancer |2 Other |
| 650 | _ | 7 | |a population‐based cohort |2 Other |
| 650 | _ | 7 | |a prognosis |2 Other |
| 700 | 1 | _ | |a Tagscherer, Katrin E |b 1 |
| 700 | 1 | _ | |a Roth, Wilfried |b 2 |
| 700 | 1 | _ | |a Bewerunge-Hudler, Melanie |0 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71 |b 3 |u dkfz |
| 700 | 1 | _ | |a Brobeil, Alexander |b 4 |
| 700 | 1 | _ | |a Kloor, Matthias |b 5 |
| 700 | 1 | _ | |a Bläker, Hendrik |b 6 |
| 700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 7 |u dkfz |
| 700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 8 |e Last author |u dkfz |
| 773 | _ | _ | |a 10.1002/ijc.70086 |g p. ijc.70086 |0 PERI:(DE-600)1474822-8 |n 12 |p 2521-2531 |t International journal of cancer |v 157 |y 2025 |x 0020-7136 |
| 909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:303956 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-17 |w ger |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-17 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-17 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-17 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-17 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J CANCER : 2022 |d 2024-12-17 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J CANCER : 2022 |d 2024-12-17 |
| 920 | 2 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)W110-20160331 |k W110 |l Microarrays |x 1 |
| 920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 2 |
| 920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie der Krebsfrüherkennung |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)C070-20160331 |
| 980 | _ | _ | |a I:(DE-He78)W110-20160331 |
| 980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|