000304113 001__ 304113
000304113 005__ 20250828114717.0
000304113 0247_ $$2doi$$a10.1093/brain/awaf260
000304113 0247_ $$2pmid$$apmid:40853947
000304113 0247_ $$2ISSN$$a0006-8950
000304113 0247_ $$2ISSN$$a1460-2156
000304113 037__ $$aDKFZ-2025-01776
000304113 041__ $$aEnglish
000304113 082__ $$a610
000304113 1001_ $$00000-0002-0268-9425$$aBremer, Juliane$$b0
000304113 245__ $$aMutual reinforcement of lymphotoxin-driven myositis and impaired autophagy in murine muscle.
000304113 260__ $$aOxford$$bOxford Univ. Press$$c2025
000304113 3367_ $$2DRIVER$$aarticle
000304113 3367_ $$2DataCite$$aOutput Types/Journal article
000304113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756300517_16146
000304113 3367_ $$2BibTeX$$aARTICLE
000304113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304113 3367_ $$00$$2EndNote$$aJournal Article
000304113 500__ $$a#LA:D440# / epub
000304113 520__ $$aInclusion body myositis (IBM) is a progressive muscle disorder characterized by inflammation and degeneration with altered proteostasis. To better understand the interrelationship between these two features, we aimed at establishing a novel preclinical mouse model. First, we used quantitative PCR to determine expression of pro-inflammatory chemo- and cytokines including lymphotoxin (LT)-signaling pathway components in human skeletal muscle tissue diagnosed with myositis. Based on these results we generated a mouse model that we analyzed at the histological, ultrastructural, transcriptional, biochemical, and behavioral level. Lastly, we subjected this model to anti-inflammatory treatments. After confirming and extending previous data on activation of lymphotoxin (LT)-signaling in human myositis, we generated distinct transgenic mouse lines co-expressing LTα and -β in skeletal muscle fibers. Transgenic mice displayed chronic myositis accompanied by dysregulated proteostasis, including an altered autophagolysosomal pathway that initially shows signs of activation and later exhaustion and decreased flux. To enhance the latter, we genetically impaired autophagy in skeletal muscle cells. Autophagy impairment alone induced a pro-inflammatory transcriptional state, but no obvious cellular inflammation. However, the combination of LT-driven myositis with autophagy impairment induced the full spectrum of characteristic molecular and pathological features of IBM in skeletal muscle, including protein inclusions with typical ultrastructural morphology and mild mitochondrial pathology. Our attempts to treat the pathology by subjecting these mice to corticosteroids or anti-Thy1.2 antibodies mirrored recent treatment failures in humans, i.e., none of these treatments resulted in significant clinical improvement of motor performance or the transcriptional profile of muscle pathology. In summary, these data provide evidence that inflammation and autophagy disruption play a synergistic role in the development of IBM-like muscular pathology. Furthermore, once established, IBM-like pathology in these mice, as in human IBM patients cannot be reverted or prevented from progression by conventional means of immunosuppression. We expect that this novel mouse model will help to identify future treatment modalities for IBM.
000304113 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000304113 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304113 650_7 $$2Other$$aNF-κB signaling
000304113 650_7 $$2Other$$aautophagy
000304113 650_7 $$2Other$$ainclusion body myositis
000304113 650_7 $$2Other$$alymphotoxin
000304113 650_7 $$2Other$$alymphotoxin signaling
000304113 650_7 $$2Other$$amyositis
000304113 7001_ $$aNagel, Judith$$b1
000304113 7001_ $$aZschüntzsch, Jana$$b2
000304113 7001_ $$00000-0001-6280-3464$$aZajt, Kamil K$$b3
000304113 7001_ $$aPalaz, Tayfun$$b4
000304113 7001_ $$aBlank, Thomas$$b5
000304113 7001_ $$aIkis, Aylin$$b6
000304113 7001_ $$aFischer, Laura A$$b7
000304113 7001_ $$aSensmeyer, Anna S M$$b8
000304113 7001_ $$aWiechers, Lara$$b9
000304113 7001_ $$aReichelt, Josef J$$b10
000304113 7001_ $$0P:(DE-He78)3a64d01585b5feb06784753545570191$$aHofmann, Kai$$b11
000304113 7001_ $$aWolf, Monika J$$b12
000304113 7001_ $$0P:(DE-He78)37436c64e916a3fb91afac3344c5fe67$$aLeuchtenberger, Corinna$$b13
000304113 7001_ $$aTripathi, Priyanka$$b14
000304113 7001_ $$aEiner, Claudia$$b15
000304113 7001_ $$aZischka, Hans$$b16
000304113 7001_ $$0P:(DE-He78)b3a731f3f04477cb4fe757beeddccf5d$$aRothermel, Ulrike$$b17$$udkfz
000304113 7001_ $$0P:(DE-He78)732be09dcef291294ee501fbaeb250a3$$aEck, Anna-L$$b18$$udkfz
000304113 7001_ $$00000-0002-6396-4195$$aReimann, Regina$$b19
000304113 7001_ $$aKana, Veronika$$b20
000304113 7001_ $$aRushing, Elisabeth$$b21
000304113 7001_ $$aAguzzi, Adriano$$b22
000304113 7001_ $$00000-0002-0349-1955$$aPrinz, Marco$$b23
000304113 7001_ $$aLiebetanz, David$$b24
000304113 7001_ $$aOdoardi, Francesca$$b25
000304113 7001_ $$aKuo, Chao-Chung$$b26
000304113 7001_ $$00000-0003-3280-6773$$aWeis, Joachim$$b27
000304113 7001_ $$00000-0002-5324-9155$$aKraft, Florian$$b28
000304113 7001_ $$aSchmidt, Jens$$b29
000304113 7001_ $$0P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5$$aHeikenwälder, Mathias$$b30$$eLast author$$udkfz
000304113 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awaf260$$gp. awaf260$$pnn$$tBrain$$vnn$$x0006-8950$$y2025
000304113 909CO $$ooai:inrepo02.dkfz.de:304113$$pVDB
000304113 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3a64d01585b5feb06784753545570191$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000304113 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)37436c64e916a3fb91afac3344c5fe67$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000304113 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b3a731f3f04477cb4fe757beeddccf5d$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000304113 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)732be09dcef291294ee501fbaeb250a3$$aDeutsches Krebsforschungszentrum$$b18$$kDKFZ
000304113 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5$$aDeutsches Krebsforschungszentrum$$b30$$kDKFZ
000304113 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000304113 9141_ $$y2025
000304113 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
000304113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2022$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000304113 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBRAIN : 2022$$d2024-12-12
000304113 9202_ $$0I:(DE-He78)D440-20160331$$kD440$$lChronische Entzündung und Krebs$$x0
000304113 9201_ $$0I:(DE-He78)D440-20160331$$kD440$$lChronische Entzündung und Krebs$$x0
000304113 980__ $$ajournal
000304113 980__ $$aVDB
000304113 980__ $$aI:(DE-He78)D440-20160331
000304113 980__ $$aUNRESTRICTED