001     304113
005     20250828114717.0
024 7 _ |a 10.1093/brain/awaf260
|2 doi
024 7 _ |a pmid:40853947
|2 pmid
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
037 _ _ |a DKFZ-2025-01776
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bremer, Juliane
|0 0000-0002-0268-9425
|b 0
245 _ _ |a Mutual reinforcement of lymphotoxin-driven myositis and impaired autophagy in murine muscle.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756300517_16146
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:D440# / epub
520 _ _ |a Inclusion body myositis (IBM) is a progressive muscle disorder characterized by inflammation and degeneration with altered proteostasis. To better understand the interrelationship between these two features, we aimed at establishing a novel preclinical mouse model. First, we used quantitative PCR to determine expression of pro-inflammatory chemo- and cytokines including lymphotoxin (LT)-signaling pathway components in human skeletal muscle tissue diagnosed with myositis. Based on these results we generated a mouse model that we analyzed at the histological, ultrastructural, transcriptional, biochemical, and behavioral level. Lastly, we subjected this model to anti-inflammatory treatments. After confirming and extending previous data on activation of lymphotoxin (LT)-signaling in human myositis, we generated distinct transgenic mouse lines co-expressing LTα and -β in skeletal muscle fibers. Transgenic mice displayed chronic myositis accompanied by dysregulated proteostasis, including an altered autophagolysosomal pathway that initially shows signs of activation and later exhaustion and decreased flux. To enhance the latter, we genetically impaired autophagy in skeletal muscle cells. Autophagy impairment alone induced a pro-inflammatory transcriptional state, but no obvious cellular inflammation. However, the combination of LT-driven myositis with autophagy impairment induced the full spectrum of characteristic molecular and pathological features of IBM in skeletal muscle, including protein inclusions with typical ultrastructural morphology and mild mitochondrial pathology. Our attempts to treat the pathology by subjecting these mice to corticosteroids or anti-Thy1.2 antibodies mirrored recent treatment failures in humans, i.e., none of these treatments resulted in significant clinical improvement of motor performance or the transcriptional profile of muscle pathology. In summary, these data provide evidence that inflammation and autophagy disruption play a synergistic role in the development of IBM-like muscular pathology. Furthermore, once established, IBM-like pathology in these mice, as in human IBM patients cannot be reverted or prevented from progression by conventional means of immunosuppression. We expect that this novel mouse model will help to identify future treatment modalities for IBM.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a NF-κB signaling
|2 Other
650 _ 7 |a autophagy
|2 Other
650 _ 7 |a inclusion body myositis
|2 Other
650 _ 7 |a lymphotoxin
|2 Other
650 _ 7 |a lymphotoxin signaling
|2 Other
650 _ 7 |a myositis
|2 Other
700 1 _ |a Nagel, Judith
|b 1
700 1 _ |a Zschüntzsch, Jana
|b 2
700 1 _ |a Zajt, Kamil K
|0 0000-0001-6280-3464
|b 3
700 1 _ |a Palaz, Tayfun
|b 4
700 1 _ |a Blank, Thomas
|b 5
700 1 _ |a Ikis, Aylin
|b 6
700 1 _ |a Fischer, Laura A
|b 7
700 1 _ |a Sensmeyer, Anna S M
|b 8
700 1 _ |a Wiechers, Lara
|b 9
700 1 _ |a Reichelt, Josef J
|b 10
700 1 _ |a Hofmann, Kai
|0 P:(DE-He78)3a64d01585b5feb06784753545570191
|b 11
700 1 _ |a Wolf, Monika J
|b 12
700 1 _ |a Leuchtenberger, Corinna
|0 P:(DE-He78)37436c64e916a3fb91afac3344c5fe67
|b 13
700 1 _ |a Tripathi, Priyanka
|b 14
700 1 _ |a Einer, Claudia
|b 15
700 1 _ |a Zischka, Hans
|b 16
700 1 _ |a Rothermel, Ulrike
|0 P:(DE-He78)b3a731f3f04477cb4fe757beeddccf5d
|b 17
|u dkfz
700 1 _ |a Eck, Anna-L
|0 P:(DE-He78)732be09dcef291294ee501fbaeb250a3
|b 18
|u dkfz
700 1 _ |a Reimann, Regina
|0 0000-0002-6396-4195
|b 19
700 1 _ |a Kana, Veronika
|b 20
700 1 _ |a Rushing, Elisabeth
|b 21
700 1 _ |a Aguzzi, Adriano
|b 22
700 1 _ |a Prinz, Marco
|0 0000-0002-0349-1955
|b 23
700 1 _ |a Liebetanz, David
|b 24
700 1 _ |a Odoardi, Francesca
|b 25
700 1 _ |a Kuo, Chao-Chung
|b 26
700 1 _ |a Weis, Joachim
|0 0000-0003-3280-6773
|b 27
700 1 _ |a Kraft, Florian
|0 0000-0002-5324-9155
|b 28
700 1 _ |a Schmidt, Jens
|b 29
700 1 _ |a Heikenwälder, Mathias
|0 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
|b 30
|e Last author
|u dkfz
773 _ _ |a 10.1093/brain/awaf260
|g p. awaf260
|0 PERI:(DE-600)1474117-9
|p nn
|t Brain
|v nn
|y 2025
|x 0006-8950
909 C O |o oai:inrepo02.dkfz.de:304113
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)3a64d01585b5feb06784753545570191
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)37436c64e916a3fb91afac3344c5fe67
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)b3a731f3f04477cb4fe757beeddccf5d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)732be09dcef291294ee501fbaeb250a3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
920 2 _ |0 I:(DE-He78)D440-20160331
|k D440
|l Chronische Entzündung und Krebs
|x 0
920 1 _ |0 I:(DE-He78)D440-20160331
|k D440
|l Chronische Entzündung und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D440-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21