000304274 001__ 304274
000304274 005__ 20250901114751.0
000304274 0247_ $$2doi$$a10.1002/ijc.70116
000304274 0247_ $$2pmid$$apmid:40884237
000304274 0247_ $$2ISSN$$a0020-7136
000304274 0247_ $$2ISSN$$a1097-0215
000304274 037__ $$aDKFZ-2025-01815
000304274 041__ $$aEnglish
000304274 082__ $$a610
000304274 1001_ $$00009-0008-7961-1977$$aRajtmajerova, Marie$$b0
000304274 245__ $$aGenetic differences between primary colorectal cancer and its paired synchronous and metachronous metastases.
000304274 260__ $$aBognor Regis$$bWiley-Liss$$c2025
000304274 3367_ $$2DRIVER$$aarticle
000304274 3367_ $$2DataCite$$aOutput Types/Journal article
000304274 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756716322_32342
000304274 3367_ $$2BibTeX$$aARTICLE
000304274 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304274 3367_ $$00$$2EndNote$$aJournal Article
000304274 500__ $$a#LA:Z999# / epub
000304274 520__ $$aAs the second most deadly cancerous disease worldwide, colorectal cancer (CRC) stands in the center of scientific interest in hope to develop novel approaches for precise diagnostics and prognosis determination. Metastatic disease remains the main cause of CRC mortality. To investigate the underlying genetic differences between CRC patients with synchronous and metachronous liver metastases, we performed whole-exome sequencing of 210 patient samples using formalin-fixed paraffin-embedded samples from primary tumors and the paired liver metastatic tissue. The analyses included types and levels of mutations and copy number variation. APC and TP53 were the most commonly mutated genes in all samples with differing frequency between primary CRC (both 50%) and its metachronous metastasis (both 64%). While MPDZ gene mutations were restricted to primary tumors that developed metachronous metastases only, mutations in VCAN, MTCL1, MDN1, SHROOM2, SPEG, and GLI2 were more prevalent in primary tumors giving rise to synchronous metastases. FBN1 mutations were unique to synchronous liver metastatic tissue. Analysis of genetic interactions revealed different associations between mutated genes in patients with tumors of different chronicity, including driver genes such as TP53, which was associated with APC in synchronous patients, while in primary tumors with metachronous metastases it co-occurs with mutations in NBPF11 and PRAMEF15, respectively. The results suggest that distinct tumor progression pathways account for different chronicity outcomes further affecting patients' survival. However, larger studies are needed incorporating transcriptomic and epigenomic data to shed further light on the mechanistic chain from mutations to downstream gene expression regulation.
000304274 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000304274 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304274 650_7 $$2Other$$aWES
000304274 650_7 $$2Other$$acolorectal cancer
000304274 650_7 $$2Other$$ametachronous liver metastasis
000304274 650_7 $$2Other$$asynchronous liver metastasis
000304274 650_7 $$2Other$$awhole‐exome sequencing
000304274 7001_ $$00000-0001-6850-780X$$aAmbrozkiewicz, Filip$$b1
000304274 7001_ $$00000-0003-0695-0552$$aHlavac, Viktor$$b2
000304274 7001_ $$00000-0001-8888-0759$$aTrailin, Andriy$$b3
000304274 7001_ $$aCervenkova, Lenka$$b4
000304274 7001_ $$aBruha, Jan$$b5
000304274 7001_ $$aSusova, Simona$$b6
000304274 7001_ $$aSoucek, Pavel$$b7
000304274 7001_ $$aVodicka, Pavel$$b8
000304274 7001_ $$aVodickova, Ludmila$$b9
000304274 7001_ $$aKubecek, Ondrej$$b10
000304274 7001_ $$aFilip, Stanislav$$b11
000304274 7001_ $$aMallela, Venkata R$$b12
000304274 7001_ $$aYe, Wenjing$$b13
000304274 7001_ $$00000-0001-7600-7143$$aZitricky, Frantisek$$b14
000304274 7001_ $$aLiska, Vaclav$$b15
000304274 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b16$$udkfz
000304274 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.70116$$gp. ijc.70116$$pnn$$tInternational journal of cancer$$vnn$$x0020-7136$$y2025
000304274 909CO $$ooai:inrepo02.dkfz.de:304274$$pVDB
000304274 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000304274 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000304274 9141_ $$y2025
000304274 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
000304274 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-17$$wger
000304274 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2022$$d2024-12-17
000304274 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2022$$d2024-12-17
000304274 9201_ $$0I:(DE-He78)Z999-20160331$$kZ999$$lErimitus im DKFZ$$x0
000304274 980__ $$ajournal
000304274 980__ $$aVDB
000304274 980__ $$aI:(DE-He78)Z999-20160331
000304274 980__ $$aUNRESTRICTED