000304286 001__ 304286
000304286 005__ 20250907022521.0
000304286 0247_ $$2doi$$a10.1038/s41596-025-01231-y
000304286 0247_ $$2pmid$$apmid:40890532
000304286 0247_ $$2ISSN$$a1754-2189
000304286 0247_ $$2ISSN$$a1750-2799
000304286 0247_ $$2altmetric$$aaltmetric:180883213
000304286 037__ $$aDKFZ-2025-01826
000304286 041__ $$aEnglish
000304286 082__ $$a610
000304286 1001_ $$00000-0001-9937-1255$$aLujumba, Ibra$$b0
000304286 245__ $$aA practical guide to identifying associations between tandem repeats and complex human traits using consensus genotypes from multiple tools.
000304286 260__ $$aBasingstoke$$bNature Publishing Group$$c2025
000304286 3367_ $$2DRIVER$$aarticle
000304286 3367_ $$2DataCite$$aOutput Types/Journal article
000304286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756819001_26696$$xReview Article
000304286 3367_ $$2BibTeX$$aARTICLE
000304286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304286 3367_ $$00$$2EndNote$$aJournal Article
000304286 500__ $$a#LA:B330# / epub
000304286 520__ $$aTandem repeats (TRs) are highly variable loci in the human genome that are linked to various human phenotypes. Accurate and reliable genotyping of TRs is important in understanding population TR variation dynamics and their effects in TR-trait association studies. In this protocol, we describe how to generate high-quality consensus TR genotypes for population genomics studies. In particular, we detail steps to: (i) perform TR genotyping from short-read whole-genome sequencing data by using the HipSTR, GangSTR, adVNTR and ExpansionHunter tools, (ii) perform quality control checks on TR genotypes by using TRTools and (iii) integrate TR genotypes from different tools by using EnsembleTR. We further discuss how to visualize and investigate TR variation patterns to identify population-specific expansions and perform TR-trait association analyses. We demonstrate the utility of these steps by analyzing a small dataset from the 1000 Genomes Project. In addition, we recapitulate a previously identified association between TR length and gene expression in the African population and provide a generalized discussion on TR analysis and its relevance to identifying complex traits. The expected time for installing the necessary software for each section is ~10 min. The expected run time on the user's desired dataset can vary from hours to days depending on factors such as the size of the data, input parameters and the capacity of the computing infrastructure.
000304286 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000304286 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304286 7001_ $$00000-0001-6874-2543$$aAdam, Yagoub$$b1
000304286 7001_ $$aZiaei Jam, Helyaneh$$b2
000304286 7001_ $$00000-0001-9653-8929$$aIsewon, Itunuoluwa$$b3
000304286 7001_ $$aMonnakgotla, Nomakhosazana$$b4
000304286 7001_ $$00000-0001-5714-0416$$aLi, Yang$$b5
000304286 7001_ $$aOnyido, Blessing$$b6
000304286 7001_ $$aFredrick, Kakembo$$b7
000304286 7001_ $$00000-0003-3835-590X$$aAdegoke, Faith$$b8
000304286 7001_ $$aEmmanuel, Jerry$$b9
000304286 7001_ $$00009-0008-0420-9502$$aAdeyemi, Jumoke$$b10
000304286 7001_ $$00000-0001-8598-3584$$aIbitoye, Olajumoke$$b11
000304286 7001_ $$aOwusu-Ansah, Samuel$$b12
000304286 7001_ $$aAkanle, Matthew Boladele$$b13
000304286 7001_ $$00000-0001-6445-8721$$aJoseph, Habi$$b14
000304286 7001_ $$00009-0004-7668-3917$$aNsubuga, Mike$$b15
000304286 7001_ $$00000-0002-5962-151X$$aGaliwango, Ronald$$b16
000304286 7001_ $$00000-0003-2712-2174$$aOkitwi, Martin$$b17
000304286 7001_ $$aMagdalene, Namuswe$$b18
000304286 7001_ $$00009-0004-3818-4949$$aWalter, Odur$$b19
000304286 7001_ $$aMngadi, Zama$$b20
000304286 7001_ $$aAdebiyi, Marion$$b21
000304286 7001_ $$00000-0002-5476-4992$$aOyelade, Jelili$$b22
000304286 7001_ $$00000-0002-9698-992X$$aNel, Melissa$$b23
000304286 7001_ $$aJjingo, Daudi$$b24
000304286 7001_ $$00000-0002-6086-3903$$aGymrek, Melissa$$b25
000304286 7001_ $$0P:(DE-He78)e66b15b8b7489783bf2775306fd04f0c$$aAdebiyi, Ezekiel Femi$$b26$$eLast author$$udkfz
000304286 773__ $$0PERI:(DE-600)2244966-8$$a10.1038/s41596-025-01231-y$$pnn$$tNature protocols$$vnn$$x1754-2189$$y2025
000304286 909CO $$ooai:inrepo02.dkfz.de:304286$$pVDB
000304286 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e66b15b8b7489783bf2775306fd04f0c$$aDeutsches Krebsforschungszentrum$$b26$$kDKFZ
000304286 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000304286 9141_ $$y2025
000304286 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
000304286 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-18$$wger
000304286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PROTOC : 2022$$d2024-12-18
000304286 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT PROTOC : 2022$$d2024-12-18
000304286 9202_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x0
000304286 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x0
000304286 980__ $$ajournal
000304286 980__ $$aVDB
000304286 980__ $$aI:(DE-He78)B330-20160331
000304286 980__ $$aUNRESTRICTED