001     304302
005     20250907022539.0
024 7 _ |a 10.1182/bloodadvances.2025017345
|2 doi
024 7 _ |a pmid:40902075
|2 pmid
024 7 _ |a 2473-9529
|2 ISSN
024 7 _ |a 2473-9537
|2 ISSN
024 7 _ |a altmetric:181061411
|2 altmetric
037 _ _ |a DKFZ-2025-01837
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Cabrera-Serrano, Antonio José
|0 0000-0003-0346-7960
|b 0
245 _ _ |a Identification of four autophagy-related genetic variants as risk factors for chronic lymphocytic leukemia.
260 _ _ |a Washington, DC
|c 2025
|b American Society of Hematology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756991072_27122
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a epub
520 _ _ |a We investigated the influence of 55,583 autophagy-related single nucleotide polymorphisms (SNPs) on chronic lymphocytic leukemia (CLL) risk across four independent populations comprising 5,472 CLL cases and 726,465 controls. We also examined their impact on overall survival (OS), time to first treatment (TTFT), autophagy flux, and immune responses. A meta-analysis of the four populations identified, for the first time, significant associations between CDKN2A (rs3731204) and BCL2 (rs4940571, rs12457371, rs1026825) SNPs and CLL risk, with CDKN2A showing the strongest association (p=1.57×10⁻¹²). We also validated previously reported associations for FAS, BCL2, and BAK1 SNPs with CLL risk (p=4.73×10⁻²¹ to 3.39×10⁻⁹). The CDKN2Ars3731204 and FASrs1926194 SNPs associated with increased CDKN2A and ACTA2 mRNA expression levels in whole blood and/or lymphocytes (p=5.1×10-7, p=1.58×10-21, and p=7.8×10-41), although no significant effect on autophagy flux was observed. However, associations were found between CDKN2A, BCL2, and FAS SNPs and various T-cell subsets, cytokine production, and circulating concentrations of IFNg, TRAIL, CD40, CCL20, and IL2RB proteins (p≤0.005). No significant association was detected between autophagy variants and OS or TTFT, suggesting that these variants drive disease initiation rather than progression. In conclusion, this study identified four novel associations for CLL and provided insights into the biological pathways that influence CLL development.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Sánchez-Maldonado, José Manuel
|b 1
700 1 _ |a Rodríguez-Sevilla, Juan José
|0 0000-0002-4741-7925
|b 2
700 1 _ |a Reyes-Zurita, Fernando Jesús
|0 0000-0003-3438-0753
|b 3
700 1 _ |a Collado, Rosa
|0 0000-0002-8205-6192
|b 4
700 1 _ |a Puiggros, Anna
|b 5
700 1 _ |a Cornejo-Calvo, Elena
|0 0000-0003-2724-6759
|b 6
700 1 _ |a García, Paloma
|b 7
700 1 _ |a Ter Horst, Rob
|0 0000-0003-0576-5873
|b 8
700 1 _ |a Benavente, Yolanda
|b 9
700 1 _ |a Jerez, Andrés
|b 10
700 1 _ |a Landi, Stefano
|0 0000-0001-8364-6357
|b 11
700 1 _ |a Espinet, Blanca
|0 0000-0002-4294-8145
|b 12
700 1 _ |a Maffei, Rossana
|0 0000-0002-3518-2006
|b 13
700 1 _ |a López-Nevot, Miguel Ángel
|0 0000-0002-3465-6062
|b 14
700 1 _ |a Ramos-Campoy, Silvia
|0 0000-0001-9175-7102
|b 15
700 1 _ |a González-Olmedo, Carmen
|b 16
700 1 _ |a Chen-Liang, Tzu-Hua
|0 0000-0001-5969-8640
|b 17
700 1 _ |a Moreno, Victor
|b 18
700 1 _ |a Jannus, Fatin
|0 0000-0001-7419-8492
|b 19
700 1 _ |a Marcos-Gragera, Rafael
|0 0000-0001-9824-3657
|b 20
700 1 _ |a Carretero-Fernández, María
|0 0009-0003-8736-7146
|b 21
700 1 _ |a Sampaio-Marques, Belém
|0 0000-0001-6580-0971
|b 22
700 1 _ |a Gámez, Irene
|b 23
700 1 _ |a Garcia-Alvarez, María
|b 24
700 1 _ |a Camp, Nicola J
|0 0000-0002-4788-1998
|b 25
700 1 _ |a Dierssen-Sotos, Trinidad
|0 0000-0002-6127-0077
|b 26
700 1 _ |a Kamaso, Joanna
|0 0009-0003-5913-9576
|b 27
700 1 _ |a Pérez, Eva María
|b 28
700 1 _ |a Norman, Aaron D
|b 29
700 1 _ |a Luppi, Mario
|b 30
700 1 _ |a Li, Yang
|0 0000-0003-4022-7341
|b 31
700 1 _ |a Alcoceba, Miguel
|b 32
700 1 _ |a Campa, Daniele
|b 33
700 1 _ |a de Sanjose, Silvia
|b 34
700 1 _ |a Marasca, Roberto
|0 0000-0002-6431-6878
|b 35
700 1 _ |a Ludovico, Paula
|0 0000-0003-4130-7167
|b 36
700 1 _ |a Clay-Gilmour, Alyssa Ione
|b 37
700 1 _ |a Canzian, Federico
|0 P:(DE-He78)5323704270b6393dcea70186ffd86bca
|b 38
|u dkfz
700 1 _ |a Ibañez, Marian
|b 39
700 1 _ |a Netea, Mihai G
|b 40
700 1 _ |a McKay, James
|b 41
700 1 _ |a Casabonne, Delphine
|0 0000-0002-7874-3707
|b 42
700 1 _ |a Berndt, Sonja I
|0 0000-0001-5230-0652
|b 43
700 1 _ |a Slager, Susan L
|0 0000-0002-5173-4712
|b 44
700 1 _ |a Sainz, Juan
|0 0000-0002-9355-2423
|b 45
773 _ _ |a 10.1182/bloodadvances.2025017345
|g p. bloodadvances.2025017345
|0 PERI:(DE-600)2876449-3
|p nn
|t Blood advances
|v nn
|y 2025
|x 2473-9529
909 C O |o oai:inrepo02.dkfz.de:304302
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 38
|6 P:(DE-He78)5323704270b6393dcea70186ffd86bca
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD ADV : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-05T12:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-05T12:07:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-05T12:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BLOOD ADV : 2022
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
920 1 _ |0 I:(DE-He78)C055-20160331
|k C055
|l Genomische Epidemiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C055-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21