001     304304
005     20250907022541.0
024 7 _ |a 10.1371/journal.pone.0331212
|2 doi
024 7 _ |a pmid:40901824
|2 pmid
024 7 _ |a altmetric:181001900
|2 altmetric
037 _ _ |a DKFZ-2025-01839
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Semancik, Christopher S
|0 0000-0002-9915-9091
|b 0
245 _ _ |a SARS-CoV-2 antibody and neutralization dynamics among persons with natural- and vaccine-induced exposures.
260 _ _ |a San Francisco, California, US
|c 2025
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756991025_27121
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Previous SARS-CoV-2 research indicates that antibody levels and corresponding neutralization potential increase with additional exposures (comprising vaccination or infection), and that hybrid immunity resulting from combined vaccination and natural infection is more robust than either alone. However, it is unclear whether or how antibody levels increase or eventually plateau with repeated exposures and how SARS-CoV-2 exposure differs by sex or other demographic factors. Research regarding the association of antibody production with neutralization potential is also limited. We conducted this analysis within the RESPIRA population-based cohort in Costa Rica to investigate relationships between antibody levels and neutralization potential at increasing exposure levels. We examined immunological profiles from systematically defined single-exposure groups (one vaccine dose or one natural infection), double-exposure groups (two vaccine doses or one vaccine dose following a natural infection), and a triple-exposure group (two vaccine doses following a natural infection). We used a S1-RBD-based serological assay for antibody level detection and a pseudovirion assay for neutralization potential quantification. Using linear regression, we compared antibody levels and pseudoneutralization geometric mean titers between exposure groups. For single exposure groups, one vaccine dose was inferior to natural infection, but a second vaccine dose was superior to natural infection. For double exposure groups, those who were vaccinated once after infection developed higher levels of antibodies and higher neutralization potential compared with those who had only two vaccine doses. We note that peak antibody levels following an exposure may plateau after two exposures while neutralization potential continues to increase with a third exposure dose. Response patterns were comparable in males and females and in sensitivity analyses stratified by age, vaccine type, and pandemic wave. These results provide evidence that SARS-CoV-2 vaccination after COVID infection provides immunological benefit and suggest neutralization potential continues to increase after a second vaccine dose despite plateauing of antibody levels.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Antibodies, Neutralizing
|2 NLM Chemicals
650 _ 7 |a Antibodies, Viral
|2 NLM Chemicals
650 _ 7 |a COVID-19 Vaccines
|2 NLM Chemicals
650 _ 7 |a Spike Glycoprotein, Coronavirus
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Antibodies, Neutralizing: immunology
|2 MeSH
650 _ 2 |a Antibodies, Neutralizing: blood
|2 MeSH
650 _ 2 |a Antibodies, Viral: immunology
|2 MeSH
650 _ 2 |a Antibodies, Viral: blood
|2 MeSH
650 _ 2 |a COVID-19: immunology
|2 MeSH
650 _ 2 |a COVID-19: prevention & control
|2 MeSH
650 _ 2 |a COVID-19: virology
|2 MeSH
650 _ 2 |a COVID-19: epidemiology
|2 MeSH
650 _ 2 |a SARS-CoV-2: immunology
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a COVID-19 Vaccines: immunology
|2 MeSH
650 _ 2 |a COVID-19 Vaccines: administration & dosage
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Costa Rica: epidemiology
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Vaccination
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Neutralization Tests
|2 MeSH
650 _ 2 |a Spike Glycoprotein, Coronavirus: immunology
|2 MeSH
700 1 _ |a Fantin, Romain
|b 1
700 1 _ |a Butt, Julia
|0 P:(DE-He78)31d7c3e829be03400641f80b821ef728
|b 2
|u dkfz
700 1 _ |a Abdelnour, Arturo
|b 3
700 1 _ |a Loria, Viviana
|b 4
700 1 _ |a Porras, Carolina
|b 5
700 1 _ |a Aparicio, Amada
|b 6
700 1 _ |a Jackson, Sarah S
|b 7
700 1 _ |a Wong-McClure, Roy
|b 8
700 1 _ |a Ocampo, Rebeca
|0 0000-0002-8069-5142
|b 9
700 1 _ |a Morera, Melvin
|b 10
700 1 _ |a Zúñiga, Michael
|b 11
700 1 _ |a Calderón, Alejandro
|b 12
700 1 _ |a Cortés, Bernal
|b 13
700 1 _ |a Castro, Roberto
|b 14
700 1 _ |a Binder, Marco
|0 P:(DE-He78)2fb2bd9048a3777dddc4cb89b115c187
|b 15
|u dkfz
700 1 _ |a Waterboer, Tim
|0 P:(DE-He78)6b4ebb9791b983b5620c0caaf3468e30
|b 16
|u dkfz
700 1 _ |a Prevots, D Rebecca
|b 17
700 1 _ |a Herrero, Rolando
|b 18
700 1 _ |a Hildesheim, Allan
|0 0000-0003-0257-2363
|b 19
700 1 _ |a Group, RESPIRA Study
|b 20
|e Collaboration Author
773 _ _ |a 10.1371/journal.pone.0331212
|g Vol. 20, no. 9, p. e0331212 -
|0 PERI:(DE-600)2267670-3
|n 9
|p e0331212 -
|t PLOS ONE
|v 20
|y 2025
|x 1932-6203
909 C O |o oai:inrepo02.dkfz.de:304304
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)31d7c3e829be03400641f80b821ef728
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)2fb2bd9048a3777dddc4cb89b115c187
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)6b4ebb9791b983b5620c0caaf3468e30
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-08T09:37:46Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
920 1 _ |0 I:(DE-He78)D320-20160331
|k D320
|l Infektionen und Krebs-Epidemiologie
|x 0
920 1 _ |0 I:(DE-He78)D430-20160331
|k D430
|l Virus-assoziierte Karzinogenese
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D320-20160331
980 _ _ |a I:(DE-He78)D430-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21