000304437 001__ 304437
000304437 005__ 20250906114842.0
000304437 0247_ $$2doi$$a10.1002/mp.18047
000304437 0247_ $$2pmid$$apmid:40903921
000304437 0247_ $$2ISSN$$a0094-2405
000304437 0247_ $$2ISSN$$a1522-8541
000304437 0247_ $$2ISSN$$a2473-4209
000304437 037__ $$aDKFZ-2025-01850
000304437 041__ $$aEnglish
000304437 082__ $$a610
000304437 1001_ $$0P:(DE-He78)00b955f90c59ccd1945fddd28371bdca$$aBaader, Edith$$b0$$eFirst author$$udkfz
000304437 245__ $$aRisk-minimizing tube current and tube voltage modulation for CT: A simulation study.
000304437 260__ $$aHoboken, NJ$$bWiley$$c2025
000304437 3367_ $$2DRIVER$$aarticle
000304437 3367_ $$2DataCite$$aOutput Types/Journal article
000304437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757078080_961
000304437 3367_ $$2BibTeX$$aARTICLE
000304437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304437 3367_ $$00$$2EndNote$$aJournal Article
000304437 500__ $$a#EA:E025#LA:E025#
000304437 520__ $$aThe optimal tube voltage in clinical CT depends on the patient's attenuation and the imaging task. Although the patient's attenuation changes with view angle and longitudinal position of the X-ray tube, the tube voltage remains constant throughout the scan in current clinical practice. In general, the optimum tube voltage increases with patient diameter. For iodine-enhanced scans, the tube voltage is ideally low to increase contrast. However, 70 kV, the lowest clinically available tube voltage today, can not always be used due to tube current restrictions.To determine the additional relative reduction in effective dose of a tube voltage modulation in addition to a tube current modulation for unenhanced and iodine-enhanced CT scans.For patient models based on CT scans, the effective dose was simulated per projection for different voltages using Monte Carlo simulations. Using these dose data and analytical estimations of noise and iodine contrast, tube voltage and tube current curves were optimized for circular scans. For unenhanced scans, the dose-weighted noise was minimized, and for iodine-enhanced scans, the dose-weighted contrast-to-noise ratio (CNRD) was maximized. The effective dose values of the optimized tube voltage and tube current curves (riskTCTVM) were compared at the same noise or same contrast-to-noise ratio (CNR) to a pure tube current modulation minimizing the effective dose (riskTCM) and to conventional mAs-minimizing tube current modulation (mAsTCM).For unenhanced scans, riskTCTVM reduces the effective dose by less than 1 % $1 \,\%$ compared to riskTCM at its optimal tube voltage. For iodine-enhanced scans, the effective dose benefit increases with the availability of low tube voltages and the eccentricity of the patient's anatomy. For a lowest voltage of 70 kV, we found average effective dose benefits of riskTCTVM to riskTCM of less than 3 % $3 \,\%$ for thorax and abdomen, 6 % $6 \,\%$ for the pelvis, and 14 % $14 \,\%$ for the shoulder. For a lowest voltage of 50 kV, we found average effective dose benefits of 7 % $7 \,\%$ for the thorax, 11 % $11 \,\%$ for the abdomen, 16 % $16 \,\%$ for the pelvis, and 28 % $28 \,\%$ for the shoulder. However, the maximum requested tube current was multiple times higher than for mAsTCM at 70 kV. Only for eccentric anatomies in the pelvis and the shoulder, riskTCTVM could lower tube current demands for a lowest available voltage of 70 kV.For unenhanced scans, tube voltage modulation in addition to a modulated tube current yields a negligible effective dose benefit. However, for iodine-enhanced circular scans, all studied anatomical regions from shoulder to pelvis would benefit from tube current and tube voltage modulation if X-ray generators with voltages down to 50 kV were available at sufficient tube power. For a lowest voltage of 70 kV, riskTCTVM can considerably reduce the effective dose for eccentric anatomies in the shoulder and the pelvis.
000304437 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000304437 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304437 650_7 $$2Other$$acomputed tomography
000304437 650_7 $$2Other$$aradiation risk
000304437 650_7 $$2Other$$atube current modulation
000304437 650_7 $$2Other$$atube voltage modulation
000304437 650_2 $$2MeSH$$aTomography, X-Ray Computed: instrumentation
000304437 650_2 $$2MeSH$$aTomography, X-Ray Computed: methods
000304437 650_2 $$2MeSH$$aTomography, X-Ray Computed: adverse effects
000304437 650_2 $$2MeSH$$aRadiation Dosage
000304437 650_2 $$2MeSH$$aHumans
000304437 650_2 $$2MeSH$$aMonte Carlo Method
000304437 650_2 $$2MeSH$$aSignal-To-Noise Ratio
000304437 650_2 $$2MeSH$$aRisk
000304437 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b1$$eLast author$$udkfz
000304437 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.18047$$gVol. 52, no. 8, p. e18047$$n8$$pe18047$$tMedical physics$$v52$$x0094-2405$$y2025
000304437 909CO $$ooai:inrepo02.dkfz.de:304437$$pVDB
000304437 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)00b955f90c59ccd1945fddd28371bdca$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000304437 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000304437 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000304437 9141_ $$y2025
000304437 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
000304437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000304437 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000304437 9202_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000304437 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000304437 9200_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000304437 980__ $$ajournal
000304437 980__ $$aVDB
000304437 980__ $$aI:(DE-He78)E025-20160331
000304437 980__ $$aUNRESTRICTED