001     304476
005     20250911114927.0
024 7 _ |a 10.1093/narcan/zcaf029
|2 doi
024 7 _ |a pmid:40918644
|2 pmid
024 7 _ |a pmc:PMC12409417
|2 pmc
037 _ _ |a DKFZ-2025-01868
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Keyl, Philipp
|b 0
245 _ _ |a Neural interaction explainable AI predicts drug response across cancers.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757502470_20326
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response. Trained on data from 546 646 drug perturbation experiments involving 1135 drugs and molecular profiles from 476 tumors, NeurixAI accurately predicted treatment responses for 272 targeted and 30 chemotherapeutic drugs in unseen tumor samples (Spearman's rho >0.2), maintaining high performance on an external validation set. Additionally, NeurixAI identified the anticancer potential of 160 repurposed non-cancer drugs. Using explainable artificial intelligence (xAI), our framework uncovered key genes influencing drug response at the individual tumor level and revealed both known and novel mechanisms of drug resistance. These findings demonstrate the potential of integrating transcriptomics with xAI to optimize cancer treatment, enable drug repurposing, and identify new therapeutic targets.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Antineoplastic Agents
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neoplasms: drug therapy
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Antineoplastic Agents: therapeutic use
|2 MeSH
650 _ 2 |a Antineoplastic Agents: pharmacology
|2 MeSH
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Drug Repositioning
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Precision Medicine: methods
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Drug Resistance, Neoplasm: genetics
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
700 1 _ |a Keyl, Julius
|0 0000-0002-5617-091X
|b 1
700 1 _ |a Mock, Andreas
|0 P:(DE-He78)8f7c3bc1451193551c2458d93222536a
|b 2
|u dkfz
700 1 _ |a Dernbach, Gabriel
|b 3
700 1 _ |a Mochmann, Liliana H
|b 4
700 1 _ |a Kiermeyer, Niklas
|0 P:(DE-He78)90e27ddc5b41406cdbfd6fa1b2e10a90
|b 5
|u dkfz
700 1 _ |a Jurmeister, Philipp
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bockmayr, Michael
|b 7
700 1 _ |a Schwarz, Roland F
|b 8
700 1 _ |a Montavon, Grégoire
|0 0000-0001-7243-6186
|b 9
700 1 _ |a Müller, Klaus-Robert
|0 0000-0002-3861-7685
|b 10
700 1 _ |a Klauschen, Frederick
|0 P:(DE-He78)69036a1bca2c671dd145166fdf347e90
|b 11
|u dkfz
773 _ _ |a 10.1093/narcan/zcaf029
|g Vol. 7, no. 3, p. zcaf029
|0 PERI:(DE-600)3025038-9
|n 3
|p zcaf029
|t NAR: cancer
|v 7
|y 2025
|x 2632-8674
909 C O |o oai:inrepo02.dkfz.de:304476
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)8f7c3bc1451193551c2458d93222536a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)90e27ddc5b41406cdbfd6fa1b2e10a90
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)69036a1bca2c671dd145166fdf347e90
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-04-03T10:37:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-03
920 1 _ |0 I:(DE-He78)MU01-20160331
|k MU01
|l DKTK Koordinierungsstelle München
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)MU01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21