000304493 001__ 304493
000304493 005__ 20250911114928.0
000304493 0247_ $$2pmid$$apmid:40931282
000304493 0247_ $$2ISSN$$a0968-5243
000304493 0247_ $$2ISSN$$a1352-8661
000304493 0247_ $$2doi$$adoi:10.1007/s10334-025-01295-7
000304493 037__ $$aDKFZ-2025-01882
000304493 041__ $$aEnglish
000304493 082__ $$a530
000304493 1001_ $$00009-0006-7444-436X$$aLópez-Martínez, Ignacio N$$b0$$eFirst author
000304493 245__ $$aComparison of B 1 + and SAR efficiency for a high-impedance metamaterial shield with different remote RF arrays at 7 T MRI: A simulation study.
000304493 260__ $$aHeidelberg$$bSpringer$$c2025
000304493 3367_ $$2DRIVER$$aarticle
000304493 3367_ $$2DataCite$$aOutput Types/Journal article
000304493 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757580915_26502
000304493 3367_ $$2BibTeX$$aARTICLE
000304493 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304493 3367_ $$00$$2EndNote$$aJournal Article
000304493 500__ $$a#EA:E020#LA:E020# / epub
000304493 520__ $$aThis study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B1+ and SAR efficiency across different impedances.Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry. Four antenna types were evaluated for B1+ and SAR efficiency.Due to space constraints the metamaterial does not reach high enough impedance, resulting in minimal performance gains for most antennas. However, fractionated dipole arrays with inductances showed increased SAR efficiency and a larger field of view. Higher impedance values (above 1000 Ω) reduced losses and enabled higher-order wave modes, improving efficiency. Intermediate impedances (10⁻2-103 Ω) introduced significant losses, potentially causing heating and detuning.HIS metamaterials can enhance transmit performance in 7 T MRI but require careful optimization of impedance, material losses, and antenna design. These factors must be considered to ensure both efficacy and safety in ultra-high-field applications.
000304493 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000304493 588__ $$aDataset connected to DataCite, PubMed, , Journals: inrepo02.dkfz.de
000304493 650_7 $$2Other$$aElectromagnetic simulations
000304493 650_7 $$2Other$$aMRI
000304493 650_7 $$2Other$$aMetamaterials
000304493 650_7 $$2Other$$aUltra-high field
000304493 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b1$$udkfz
000304493 7001_ $$aSchmidt, Rita$$b2
000304493 7001_ $$0P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aOrzada, Stephan$$b3$$eLast author$$udkfz
000304493 773__ $$0PERI:(DE-600)1502491-X$$adoi:10.1007/s10334-025-01295-7$$pnn$$tMagnetic resonance materials in physics, biology and medicine$$vnn$$x0968-5243$$y2025
000304493 909CO $$ooai:inrepo02.dkfz.de:304493$$pVDB
000304493 9101_ $$0I:(DE-588b)2036810-0$$60009-0006-7444-436X$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000304493 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000304493 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000304493 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000304493 9141_ $$y2025
000304493 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000304493 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000304493 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MATER PHY : 2022$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000304493 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000304493 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000304493 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000304493 9200_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000304493 980__ $$ajournal
000304493 980__ $$aVDB
000304493 980__ $$aI:(DE-He78)E020-20160331
000304493 980__ $$aUNRESTRICTED