001     304493
005     20250911114928.0
024 7 _ |a pmid:40931282
|2 pmid
024 7 _ |a 0968-5243
|2 ISSN
024 7 _ |a 1352-8661
|2 ISSN
024 7 _ |a doi:10.1007/s10334-025-01295-7
|2 doi
037 _ _ |a DKFZ-2025-01882
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a López-Martínez, Ignacio N
|0 0009-0006-7444-436X
|b 0
|e First author
245 _ _ |a Comparison of B 1 + and SAR efficiency for a high-impedance metamaterial shield with different remote RF arrays at 7 T MRI: A simulation study.
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757580915_26502
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E020#LA:E020# / epub
520 _ _ |a This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B1+ and SAR efficiency across different impedances.Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry. Four antenna types were evaluated for B1+ and SAR efficiency.Due to space constraints the metamaterial does not reach high enough impedance, resulting in minimal performance gains for most antennas. However, fractionated dipole arrays with inductances showed increased SAR efficiency and a larger field of view. Higher impedance values (above 1000 Ω) reduced losses and enabled higher-order wave modes, improving efficiency. Intermediate impedances (10⁻2-103 Ω) introduced significant losses, potentially causing heating and detuning.HIS metamaterials can enhance transmit performance in 7 T MRI but require careful optimization of impedance, material losses, and antenna design. These factors must be considered to ensure both efficacy and safety in ultra-high-field applications.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Electromagnetic simulations
|2 Other
650 _ 7 |a MRI
|2 Other
650 _ 7 |a Metamaterials
|2 Other
650 _ 7 |a Ultra-high field
|2 Other
700 1 _ |a Ladd, Mark E
|0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
|b 1
|u dkfz
700 1 _ |a Schmidt, Rita
|b 2
700 1 _ |a Orzada, Stephan
|0 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
|b 3
|e Last author
|u dkfz
773 _ _ |a doi:10.1007/s10334-025-01295-7
|0 PERI:(DE-600)1502491-X
|p nn
|t Magnetic resonance materials in physics, biology and medicine
|v nn
|y 2025
|x 0968-5243
909 C O |o oai:inrepo02.dkfz.de:304493
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0009-0006-7444-436X
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)7985b432d853ab8929db0f1cb121667f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MATER PHY : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 0 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21