001     304500
005     20250911114929.0
024 7 _ |a 10.3389/fonc.2025.1587745
|2 doi
024 7 _ |a pmid:40927524
|2 pmid
024 7 _ |a pmc:PMC12416087
|2 pmc
037 _ _ |a DKFZ-2025-01889
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Yun, Yeong Chul
|0 P:(DE-He78)d3970476eaefe6c7002e9eb4041ea68f
|b 0
|e First author
|u dkfz
245 _ _ |a Radiomics features from the peritumoral region can be associated with the epilepsy status of glioblastoma patients.
260 _ _ |a Lausanne
|c 2025
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757580782_26501
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E010#
520 _ _ |a Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.8 years; 268 men, 183 women) were analyzed. Three hundred thirty-six patients reported no epilepsy, while 115 patients were diagnosed with symptomatic epilepsy. A total of 1,546 radiomics features were extracted from contrast-enhancing tumor, peritumoral regions, and normal-appearing white matter as regions of interest using PyRadiomics. The dataset was initially split into a training (70%) and a validation (30%) cohort. The training cohort was used for feature selection with ElasticNet and model optimization. Various machine learning models, including logistic regression (LR), were used to predict epilepsy status. The models' performances were evaluated with the validation cohort, and the area under the curve of the receiver operating characteristics (AUC) was used as a measure. For identifying relevant features, permutation feature importance was applied.The performance of LR using radiomics features from only a single ROI in the validation cohort was AUC = 0.83 (95% CI: 0.76-0.91) and AUC = 0.77 (95% CI: 0.69-0.85) for the peritumoral and white matter regions, respectively. The most important features in peritumoral regions were shape features, while for the white matter region, higher-order features from FLAIR were most relevant.Radiomics features from peritumoral and normal-appearing white matter can be associated with epilepsy status at diagnosis, suggesting an important role of these regions for the development of epilepsy in glioblastoma patients.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a MRI
|2 Other
650 _ 7 |a epilepsy
|2 Other
650 _ 7 |a glioblastoma
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a radiomics
|2 Other
650 _ 7 |a radiomics features from peritumoral
|2 Other
700 1 _ |a Jende, Johann M E
|0 P:(DE-He78)af2fba3014dac56ccf4188c9879dce19
|b 1
|u dkfz
700 1 _ |a Holz, Katharina
|b 2
700 1 _ |a Wolf, Sabine
|b 3
700 1 _ |a Garhöfer, Freya
|b 4
700 1 _ |a Hohmann, Anja
|b 5
700 1 _ |a Vollmuth, Philipp
|b 6
700 1 _ |a Bendszus, Martin
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 8
|u dkfz
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 9
|u dkfz
700 1 _ |a Heiland, Sabine
|b 10
700 1 _ |a Wick, Wolfgang
|b 11
700 1 _ |a Venkataramani, Varun
|b 12
700 1 _ |a Kurz, Felix Tobias
|0 P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.3389/fonc.2025.1587745
|g Vol. 15, p. 1587745
|0 PERI:(DE-600)2649216-7
|p 1587745
|t Frontiers in oncology
|v 15
|y 2025
|x 2234-943X
909 C O |o oai:inrepo02.dkfz.de:304500
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d3970476eaefe6c7002e9eb4041ea68f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)af2fba3014dac56ccf4188c9879dce19
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT ONCOL : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:01:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:01:20Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:01:20Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-08-08T17:01:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 2 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21