001     304584
005     20250916115009.0
024 7 _ |a 10.1186/s12935-025-03969-7
|2 doi
024 7 _ |a pmid:40946104
|2 pmid
037 _ _ |a DKFZ-2025-01907
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wansch, Katharina
|b 0
245 _ _ |a Multi-drug pharmacotyping improves therapy prediction in pancreatic cancer organoids.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757942328_16521
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Patient-Derived Organoids (PDOs) represent a promising technology for therapy prediction in pancreatic cancer, with the potential of enhancing treatment outcomes and allowing more effective, personalized treatment choices. However, classification approaches into sensitive and resistant models remain very variable and are based on single-agent testing only, neglecting interactive effects of multi-drug combinations. Here, we established 13 PDOs and performed both single-agent and multi-drug testing. By comparing different clustering approaches of drug-response metrics and establishing a new classification approach based on pharmacokinetic modelling, we were able to evaluate which score best predicts the clinical response of patients. Our newly developed score considered the Area Under The Curve (AUC) of cell viability curves and reached a prediction accuracy of 85%. Our data supports previous findings for PDOs to constitute an effective platform for translational drug testing. Furthermore, our results suggest that the AUC is a more accurate drug-response metric than the half maximal inhibitory concentration (IC50), and that multi-drug testing yields a higher accuracy than single-agent testing. The methodology and outcomes presented in this study are of critical relevance for future PDO-based translational trials as they allow a new physiology-based approach towards multi-drug testing and classification of organoid response, which improves PDO prediction accuracy.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Multi-Drug response metrics
|2 Other
650 _ 7 |a Pancreatic adenocarcinoma
|2 Other
650 _ 7 |a Patient-derived organoids
|2 Other
650 _ 7 |a Pharmacokinetic modelling
|2 Other
700 1 _ |a Pelzer, Uwe
|b 1
700 1 _ |a Schneider, François
|b 2
700 1 _ |a Dölvers, Florian
|b 3
700 1 _ |a Kühn, Anna
|b 4
700 1 _ |a Dragomir, Mihnea-Paul
|0 P:(DE-He78)396821e874b632341e4bcabd27bcad3f
|b 5
|u dkfz
700 1 _ |a Ihlow, Jana
|b 6
700 1 _ |a Hilfenhaus, Georg
|b 7
700 1 _ |a Vecchione, Loredana
|b 8
700 1 _ |a Felsenstein, Matthäus
|b 9
700 1 _ |a Ma, Dou
|b 10
700 1 _ |a Lerchbaumer, Markus
|b 11
700 1 _ |a Jürgensen, Christian
|b 12
700 1 _ |a Bahra, Marcus
|b 13
700 1 _ |a Granada, Adrian E
|b 14
700 1 _ |a Duwe, Gregor
|b 15
700 1 _ |a Stintzing, Sebastian
|b 16
700 1 _ |a Keilholz, Ulrich
|b 17
700 1 _ |a Neumann, Christopher C M
|b 18
773 _ _ |a 10.1186/s12935-025-03969-7
|g Vol. 25, no. 1, p. 321
|0 PERI:(DE-600)2091573-1
|n 1
|p 321
|t Cancer cell international
|v 25
|y 2025
|x 1475-2867
909 C O |o oai:inrepo02.dkfz.de:304584
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)396821e874b632341e4bcabd27bcad3f
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER CELL INT : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:04Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER CELL INT : 2022
|d 2024-12-13
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21