000304591 001__ 304591
000304591 005__ 20250916115009.0
000304591 0247_ $$2doi$$a10.1016/j.jocmr.2025.101958
000304591 0247_ $$2pmid$$apmid:40946969
000304591 0247_ $$2ISSN$$a1097-6647
000304591 0247_ $$2ISSN$$a1532-429X
000304591 037__ $$aDKFZ-2025-01914
000304591 041__ $$aEnglish
000304591 082__ $$a610
000304591 1001_ $$0P:(DE-He78)e9dc924f238fa6cc29465942875fe8f0$$aFull, Peter$$b0$$eFirst author
000304591 245__ $$aCardiac Magnetic Resonance Imaging in the German National Cohort (NAKO): Automated Segmentation of Short-Axis Cine Images and Post-Processing Quality Control.
000304591 260__ $$a[Amsterdam]$$bElsevier$$c2025
000304591 3367_ $$2DRIVER$$aarticle
000304591 3367_ $$2DataCite$$aOutput Types/Journal article
000304591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757942582_16315
000304591 3367_ $$2BibTeX$$aARTICLE
000304591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304591 3367_ $$00$$2EndNote$$aJournal Article
000304591 500__ $$a#EA:E230# / epub
000304591 520__ $$aThe prospective, multicenter German National Cohort (NAKO) provides a unique dataset of cardiac magnetic resonance (CMR) cine images. Effective processing of these images requires a robust segmentation and quality control pipeline.A deep learning model for semantic segmentation, based on the nnU-Net architecture, was applied to full-cycle short-axis cine images from 29,908 baseline participants. The primary objective was to determine data on structure and function for both ventricles (LV, RV), including end-diastolic volumes (EDV), end-systolic volumes (ESV), and LV myocardial mass. Quality control measures included a visual assessment of outliers in morphofunctional parameters, inter- and intra-ventricular phase differences, and time-volume curves (TVC). These were adjudicated using a five-point rating scale, ranging from five (excellent) to one (non-diagnostic), with ratings of three or lower subject to exclusion. The predictive value of outlier criteria for inclusion and exclusion was evaluated using receiver operating characteristics analysis.The segmentation model generated complete data for 29,609 participants (incomplete in 1.0%), of which 5,082 cases (17.0%) underwent visual assessment. Quality assurance yielded a sample of 26,899 (90.8%) participants with excellent or good quality, excluding 1,875 participants due to image quality issues and 835 participants due to segmentation quality issues. TVC was the strongest single discriminator between included and excluded participants (AUC: 0.684). Of the two-category combinations, the pairing of TVC and phases provided the greatest improvement over TVC alone (AUC difference: 0.044; p<0.001). The best performance was observed when all three categories were combined (AUC: 0.748). By extending the quality-controlled sample to include mid-level 'acceptable' quality ratings, a total of 28,413 (96.0%) participants could be included.The implemented pipeline facilitated the automated segmentation of an extensive CMR dataset, integrating quality control measures. This methodology ensures that ensuing quantitative analyses are conducted with a diminished risk of bias.
000304591 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000304591 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304591 650_7 $$2Other$$aArtificial intelligence
000304591 650_7 $$2Other$$aCardiac MR imaging
000304591 650_7 $$2Other$$aGerman National Cohort
000304591 650_7 $$2Other$$aPopulation imaging
000304591 650_7 $$2Other$$aQuality control
000304591 7001_ $$aSchirrmeister, Robin T$$b1
000304591 7001_ $$aHein, Manuel$$b2
000304591 7001_ $$aRusse, Maximilian F$$b3
000304591 7001_ $$aReisert, Marco$$b4
000304591 7001_ $$aAmmann, Clemens$$b5
000304591 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin-Halina$$b6$$udkfz
000304591 7001_ $$aNiendorf, Thoralf$$b7
000304591 7001_ $$aPischon, Tobias$$b8
000304591 7001_ $$aSchulz-Menger, Jeanette$$b9
000304591 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b10$$udkfz
000304591 7001_ $$aBamberg, Fabian$$b11
000304591 7001_ $$aRospleszcz, Susanne$$b12
000304591 7001_ $$aSchlett, Christopher L$$b13
000304591 7001_ $$aSchuppert, Christopher$$b14
000304591 773__ $$0PERI:(DE-600)2578881-4$$a10.1016/j.jocmr.2025.101958$$gp. 101958 -$$pnn$$tJournal of cardiovascular magnetic resonance$$vnn$$x1097-6647$$y2025
000304591 909CO $$ooai:inrepo02.dkfz.de:304591$$pVDB
000304591 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e9dc924f238fa6cc29465942875fe8f0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000304591 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000304591 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000304591 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000304591 9141_ $$y2025
000304591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-04T08:35:35Z
000304591 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-04T08:35:35Z
000304591 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-04T08:35:35Z
000304591 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CARDIOVASC MAGN R : 2022$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CARDIOVASC MAGN R : 2022$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-10
000304591 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-10
000304591 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x0
000304591 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebs$$x1
000304591 9200_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x0
000304591 980__ $$ajournal
000304591 980__ $$aVDB
000304591 980__ $$aI:(DE-He78)E230-20160331
000304591 980__ $$aI:(DE-He78)C020-20160331
000304591 980__ $$aUNRESTRICTED