001     304591
005     20250916115009.0
024 7 _ |a 10.1016/j.jocmr.2025.101958
|2 doi
024 7 _ |a pmid:40946969
|2 pmid
024 7 _ |a 1097-6647
|2 ISSN
024 7 _ |a 1532-429X
|2 ISSN
037 _ _ |a DKFZ-2025-01914
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Full, Peter
|0 P:(DE-He78)e9dc924f238fa6cc29465942875fe8f0
|b 0
|e First author
245 _ _ |a Cardiac Magnetic Resonance Imaging in the German National Cohort (NAKO): Automated Segmentation of Short-Axis Cine Images and Post-Processing Quality Control.
260 _ _ |a [Amsterdam]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757942582_16315
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E230# / epub
520 _ _ |a The prospective, multicenter German National Cohort (NAKO) provides a unique dataset of cardiac magnetic resonance (CMR) cine images. Effective processing of these images requires a robust segmentation and quality control pipeline.A deep learning model for semantic segmentation, based on the nnU-Net architecture, was applied to full-cycle short-axis cine images from 29,908 baseline participants. The primary objective was to determine data on structure and function for both ventricles (LV, RV), including end-diastolic volumes (EDV), end-systolic volumes (ESV), and LV myocardial mass. Quality control measures included a visual assessment of outliers in morphofunctional parameters, inter- and intra-ventricular phase differences, and time-volume curves (TVC). These were adjudicated using a five-point rating scale, ranging from five (excellent) to one (non-diagnostic), with ratings of three or lower subject to exclusion. The predictive value of outlier criteria for inclusion and exclusion was evaluated using receiver operating characteristics analysis.The segmentation model generated complete data for 29,609 participants (incomplete in 1.0%), of which 5,082 cases (17.0%) underwent visual assessment. Quality assurance yielded a sample of 26,899 (90.8%) participants with excellent or good quality, excluding 1,875 participants due to image quality issues and 835 participants due to segmentation quality issues. TVC was the strongest single discriminator between included and excluded participants (AUC: 0.684). Of the two-category combinations, the pairing of TVC and phases provided the greatest improvement over TVC alone (AUC difference: 0.044; p<0.001). The best performance was observed when all three categories were combined (AUC: 0.748). By extending the quality-controlled sample to include mid-level 'acceptable' quality ratings, a total of 28,413 (96.0%) participants could be included.The implemented pipeline facilitated the automated segmentation of an extensive CMR dataset, integrating quality control measures. This methodology ensures that ensuing quantitative analyses are conducted with a diminished risk of bias.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Cardiac MR imaging
|2 Other
650 _ 7 |a German National Cohort
|2 Other
650 _ 7 |a Population imaging
|2 Other
650 _ 7 |a Quality control
|2 Other
700 1 _ |a Schirrmeister, Robin T
|b 1
700 1 _ |a Hein, Manuel
|b 2
700 1 _ |a Russe, Maximilian F
|b 3
700 1 _ |a Reisert, Marco
|b 4
700 1 _ |a Ammann, Clemens
|b 5
700 1 _ |a Greiser, Karin-Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 6
|u dkfz
700 1 _ |a Niendorf, Thoralf
|b 7
700 1 _ |a Pischon, Tobias
|b 8
700 1 _ |a Schulz-Menger, Jeanette
|b 9
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 10
|u dkfz
700 1 _ |a Bamberg, Fabian
|b 11
700 1 _ |a Rospleszcz, Susanne
|b 12
700 1 _ |a Schlett, Christopher L
|b 13
700 1 _ |a Schuppert, Christopher
|b 14
773 _ _ |a 10.1016/j.jocmr.2025.101958
|g p. 101958 -
|0 PERI:(DE-600)2578881-4
|p nn
|t Journal of cardiovascular magnetic resonance
|v nn
|y 2025
|x 1097-6647
909 C O |o oai:inrepo02.dkfz.de:304591
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e9dc924f238fa6cc29465942875fe8f0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-04T08:35:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-04T08:35:35Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-04T08:35:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CARDIOVASC MAGN R : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CARDIOVASC MAGN R : 2022
|d 2024-12-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-10
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 1
920 0 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21