000304600 001__ 304600
000304600 005__ 20250919115036.0
000304600 0247_ $$2doi$$a10.1371/journal.pone.0331509
000304600 0247_ $$2pmid$$apmid:40961159
000304600 037__ $$aDKFZ-2025-01919
000304600 041__ $$aEnglish
000304600 082__ $$a610
000304600 1001_ $$00009-0000-4951-0499$$aDimou, Kyprianos$$b0
000304600 245__ $$aThe impact of tumor microenvironment and treatment schedule on the effectiveness of radiation therapy.
000304600 260__ $$aSan Francisco, California, US$$bPLOS$$c2025
000304600 3367_ $$2DRIVER$$aarticle
000304600 3367_ $$2DataCite$$aOutput Types/Journal article
000304600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758201488_22393
000304600 3367_ $$2BibTeX$$aARTICLE
000304600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304600 3367_ $$00$$2EndNote$$aJournal Article
000304600 520__ $$aExternal Beam Radiation Therapy (EBRT) is predominantly administered using Conventionally Fractionated Radiotherapy (CFRT), that is 2 Gy per fraction. However, Moderately Hypofractionated Radiotherapy (MHRT) (approx. 2.5-3 Gy per fraction) and Stereotactic Body Radiotherapy (SBRT) (approx. 6-24 Gy per fraction) regimen are currently clinically investigated or even recently included in standard clinical practice. In addition, hyperfractionated radiotherapy (<1.8-2 Gy per fraction) is also clinically investigated or already used in standard clinical practices. The therapeutic effects of each of these radiotherapy schedules might depend on the degree of radioresistance of the tumor but also on properties of the tumor microenvironment, such as tumor perfusion and oxygenation. Here, building on previous work, we developed a mathematical model to investigate optimal radiotherapy treatment protocols in solid tumors. The model incorporates direct effects of radiation on cancer cells and accounts for the impact of tumor perfusion and oxygenation on the efficacy of radiation therapy. The model was able to accurately reproduce both preclinical and clinical data from different radiotherapy treatment schedules. It confirmed that greater tumor perfusion and thus, oxygenation improves treatment effectiveness by increasing the number of cancer cells killed during the treatment period. It further predicted that this effect is more pronounced for radioresistant tumors, meaning that changes in tumor perfusion of more radioresistant tumors have a greater impact on the percentage of surviving cells at the end of the treatment. The mathematical model provides mechanistic insights into the effectiveness of various radiotherapy schedules and guidelines for how modifying the tumor microenvironment to restore perfusion can affect radiation therapy.
000304600 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000304600 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304600 650_2 $$2MeSH$$aTumor Microenvironment: radiation effects
000304600 650_2 $$2MeSH$$aHumans
000304600 650_2 $$2MeSH$$aNeoplasms: radiotherapy
000304600 650_2 $$2MeSH$$aNeoplasms: pathology
000304600 650_2 $$2MeSH$$aNeoplasms: blood supply
000304600 650_2 $$2MeSH$$aDose Fractionation, Radiation
000304600 650_2 $$2MeSH$$aTreatment Outcome
000304600 650_2 $$2MeSH$$aModels, Biological
000304600 650_2 $$2MeSH$$aModels, Theoretical
000304600 7001_ $$00000-0002-9367-4906$$aRoussakis, Yiannis$$b1
000304600 7001_ $$0P:(DE-HGF)0$$aZamboglou, Constantinos$$b2
000304600 7001_ $$aStylianopoulos, Triantafyllos$$b3
000304600 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0331509$$gVol. 20, no. 9, p. e0331509 -$$n9$$pe0331509$$tPLOS ONE$$v20$$x1932-6203$$y2025
000304600 909CO $$ooai:inrepo02.dkfz.de:304600$$pVDB
000304600 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000304600 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000304600 9141_ $$y2025
000304600 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2022$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-08T09:37:46Z
000304600 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-08T09:37:46Z
000304600 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-02-08T09:37:46Z
000304600 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-02-08T09:37:46Z
000304600 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-16
000304600 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-16
000304600 9201_ $$0I:(DE-He78)FR01-20160331$$kFR01$$lDKTK Koordinierungsstelle Freiburg$$x0
000304600 980__ $$ajournal
000304600 980__ $$aVDB
000304600 980__ $$aI:(DE-He78)FR01-20160331
000304600 980__ $$aUNRESTRICTED