001     304606
005     20251106144407.0
024 7 _ |a 10.1038/s41586-025-09529-3
|2 doi
024 7 _ |a pmid:40963019
|2 pmid
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:181469516
|2 altmetric
037 _ _ |a DKFZ-2025-01925
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Shmatko, Artem
|0 P:(DE-He78)09d6c35e975cb490a4532eb5b04ccda2
|b 0
|e First author
|u dkfz
245 _ _ |a Learning the natural history of human disease with generative transformers.
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762436598_1579194
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B450#LA:B450# / 2025 Nov;647(8088):248-256
520 _ _ |a Decision-making in healthcare relies on understanding patients' past and current health states to predict and, ultimately, change their future course1-3. Artificial intelligence (AI) methods promise to aid this task by learning patterns of disease progression from large corpora of health records4,5. However, their potential has not been fully investigated at scale. Here we modify the GPT6 (generative pretrained transformer) architecture to model the progression and competing nature of human diseases. We train this model, Delphi-2M, on data from 0.4 million UK Biobank participants and validate it using external data from 1.9 million Danish individuals with no change in parameters. Delphi-2M predicts the rates of more than 1,000 diseases, conditional on each individual's past disease history, with accuracy comparable to that of existing single-disease models. Delphi-2M's generative nature also enables sampling of synthetic future health trajectories, providing meaningful estimates of potential disease burden for up to 20 years, and enabling the training of AI models that have never seen actual data. Explainable AI methods7 provide insights into Delphi-2M's predictions, revealing clusters of co-morbidities within and across disease chapters and their time-dependent consequences on future health, but also highlight biases learnt from training data. In summary, transformer-based models appear to be well suited for predictive and generative health-related tasks, are applicable to population-scale datasets and provide insights into temporal dependencies between disease events, potentially improving the understanding of personalized health risks and informing precision medicine approaches.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Jung, Alexander Wolfgang
|0 0000-0001-8416-6849
|b 1
700 1 _ |a Gaurav, Kumar
|b 2
700 1 _ |a Brunak, Søren
|0 0000-0003-0316-5866
|b 3
700 1 _ |a Mortensen, Laust Hvas
|b 4
700 1 _ |a Birney, Ewan
|0 0000-0001-8314-8497
|b 5
700 1 _ |a Fitzgerald, Tom
|0 0000-0002-2370-8496
|b 6
700 1 _ |a Gerstung, Moritz
|0 P:(DE-He78)bf8843f36606c8735a840f6278fa1e90
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41586-025-09529-3
|0 PERI:(DE-600)1413423-8
|n 8088
|p 248-256
|t Nature
|v 647
|y 2025
|x 0028-0836
909 C O |p VDB
|o oai:inrepo02.dkfz.de:304606
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)09d6c35e975cb490a4532eb5b04ccda2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)bf8843f36606c8735a840f6278fa1e90
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2022
|d 2025-01-06
920 2 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 0
920 1 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 0
920 0 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B450-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21