000305028 001__ 305028
000305028 005__ 20251208140716.0
000305028 0247_ $$2doi$$a10.1002/mrm.70101
000305028 0247_ $$2pmid$$apmid:41024603
000305028 0247_ $$2ISSN$$a1522-2594
000305028 0247_ $$2ISSN$$a0740-3194
000305028 037__ $$aDKFZ-2025-02010
000305028 041__ $$aEnglish
000305028 082__ $$a610
000305028 1001_ $$00000-0002-7092-1847$$aEgger, Nico$$b0
000305028 245__ $$aEvaluation of an interleaved acquisition scheme for improved robustness of channel-wise relative B1 + mapping at 7 T.
000305028 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2026
000305028 3367_ $$2DRIVER$$aarticle
000305028 3367_ $$2DataCite$$aOutput Types/Journal article
000305028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765199184_2584395
000305028 3367_ $$2BibTeX$$aARTICLE
000305028 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305028 3367_ $$00$$2EndNote$$aJournal Article
000305028 500__ $$a#LA:E020#/ 2026 Feb;95(2):1157-1168
000305028 520__ $$aThe purpose was to evaluate, whether an interleaved acquisition scheme for a fast relative B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping method at 7 T reduces the likelihood of errors from exceeding the linear flip angle (FA) regime compared to a conventional sequential acquisition.Simulations of a channel-wise relative B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping sequence were performed for sequential and interleaved acquisition schemes at different reference voltages (≙ different FAs). The simulations were performed for a phantom, the heart and the prostate and were based on 7 T ground-truth (GT) B 1 + $$ {\mathrm{B}}_1^{+} $$ data acquired with an actual FA imaging sequence (phantom) or obtained from electromagnetic field simulations (heart/prostate). Acquisition schemes were evaluated based on their signal linearity by calculating a normalized mean FA error between simulated signal intensities and GT B 1 + $$ {\mathrm{B}}_1^{+} $$ data. Additionally, validation measurements of relative B 1 + $$ {\mathrm{B}}_1^{+} $$ maps with the sequential and interleaved acquisition schemes were acquired for the phantom.Validation measurements showed a good agreement with the simulation results for both acquisition schemes and displayed stronger deviations to the GT B 1 + $$ {\mathrm{B}}_1^{+} $$ data for the sequential scheme. The quantitative evaluation yielded higher FA errors for the sequential acquisition scheme for all three regions and all simulated reference voltages. At the same level of error, mean signals were higher for the interleaved acquisition scheme in all cases. Differences between interleaved and sequential acquisition schemes were most pronounced in the steady-state.An interleaved acquisition of channel-wise relative B 1 + $$ {\mathrm{B}}_1^{+} $$ maps extends the range of the linear FA regime, reducing the likelihood of errors and increasing the robustness of the approach.
000305028 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000305028 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000305028 650_7 $$2Other$$a7 Tesla
000305028 650_7 $$2Other$$aB1+ mapping
000305028 650_7 $$2Other$$aheart
000305028 650_7 $$2Other$$aparallel transmission
000305028 650_7 $$2Other$$aprostate
000305028 650_7 $$2Other$$aultra‐high field
000305028 7001_ $$00000-0002-5978-3383$$aRuck, Laurent$$b1
000305028 7001_ $$aNagelstraßer, Sophia$$b2
000305028 7001_ $$aSchirmer, Judith$$b3
000305028 7001_ $$aWildenberg, Saskia$$b4
000305028 7001_ $$aBitz, Andreas$$b5
000305028 7001_ $$00000-0002-4620-8216$$aHerrler, Jürgen$$b6
000305028 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b7$$udkfz
000305028 7001_ $$aUder, Michael$$b8
000305028 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b9$$eLast author$$udkfz
000305028 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.70101$$gp. mrm.70101$$n2$$p1157-1168$$tMagnetic resonance in medicine$$v95$$x1522-2594$$y2026
000305028 909CO $$ooai:inrepo02.dkfz.de:305028$$pVDB
000305028 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000305028 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000305028 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000305028 9141_ $$y2025
000305028 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000305028 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000305028 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000305028 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000305028 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000305028 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000305028 980__ $$ajournal
000305028 980__ $$aVDB
000305028 980__ $$aI:(DE-He78)E020-20160331
000305028 980__ $$aUNRESTRICTED