001     305028
005     20251208140716.0
024 7 _ |a 10.1002/mrm.70101
|2 doi
024 7 _ |a pmid:41024603
|2 pmid
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
037 _ _ |a DKFZ-2025-02010
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Egger, Nico
|0 0000-0002-7092-1847
|b 0
245 _ _ |a Evaluation of an interleaved acquisition scheme for improved robustness of channel-wise relative B1 + mapping at 7 T.
260 _ _ |a New York, NY [u.a.]
|c 2026
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765199184_2584395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E020#/ 2026 Feb;95(2):1157-1168
520 _ _ |a The purpose was to evaluate, whether an interleaved acquisition scheme for a fast relative B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping method at 7 T reduces the likelihood of errors from exceeding the linear flip angle (FA) regime compared to a conventional sequential acquisition.Simulations of a channel-wise relative B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping sequence were performed for sequential and interleaved acquisition schemes at different reference voltages (≙ different FAs). The simulations were performed for a phantom, the heart and the prostate and were based on 7 T ground-truth (GT) B 1 + $$ {\mathrm{B}}_1^{+} $$ data acquired with an actual FA imaging sequence (phantom) or obtained from electromagnetic field simulations (heart/prostate). Acquisition schemes were evaluated based on their signal linearity by calculating a normalized mean FA error between simulated signal intensities and GT B 1 + $$ {\mathrm{B}}_1^{+} $$ data. Additionally, validation measurements of relative B 1 + $$ {\mathrm{B}}_1^{+} $$ maps with the sequential and interleaved acquisition schemes were acquired for the phantom.Validation measurements showed a good agreement with the simulation results for both acquisition schemes and displayed stronger deviations to the GT B 1 + $$ {\mathrm{B}}_1^{+} $$ data for the sequential scheme. The quantitative evaluation yielded higher FA errors for the sequential acquisition scheme for all three regions and all simulated reference voltages. At the same level of error, mean signals were higher for the interleaved acquisition scheme in all cases. Differences between interleaved and sequential acquisition schemes were most pronounced in the steady-state.An interleaved acquisition of channel-wise relative B 1 + $$ {\mathrm{B}}_1^{+} $$ maps extends the range of the linear FA regime, reducing the likelihood of errors and increasing the robustness of the approach.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 7 Tesla
|2 Other
650 _ 7 |a B1+ mapping
|2 Other
650 _ 7 |a heart
|2 Other
650 _ 7 |a parallel transmission
|2 Other
650 _ 7 |a prostate
|2 Other
650 _ 7 |a ultra‐high field
|2 Other
700 1 _ |a Ruck, Laurent
|0 0000-0002-5978-3383
|b 1
700 1 _ |a Nagelstraßer, Sophia
|b 2
700 1 _ |a Schirmer, Judith
|b 3
700 1 _ |a Wildenberg, Saskia
|b 4
700 1 _ |a Bitz, Andreas
|b 5
700 1 _ |a Herrler, Jürgen
|0 0000-0002-4620-8216
|b 6
700 1 _ |a Schmitter, Sebastian
|0 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e
|b 7
|u dkfz
700 1 _ |a Uder, Michael
|b 8
700 1 _ |a Nagel, Armin
|0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1002/mrm.70101
|g p. mrm.70101
|0 PERI:(DE-600)1493786-4
|n 2
|p 1157-1168
|t Magnetic resonance in medicine
|v 95
|y 2026
|x 1522-2594
909 C O |p VDB
|o oai:inrepo02.dkfz.de:305028
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21