000305340 001__ 305340
000305340 005__ 20251113151612.0
000305340 0247_ $$2doi$$a10.1038/s41598-025-13165-2
000305340 0247_ $$2pmid$$apmid:41073448
000305340 0247_ $$2pmc$$apmc:PMC12514200
000305340 0247_ $$2altmetric$$aaltmetric:182350135
000305340 037__ $$aDKFZ-2025-02084
000305340 041__ $$aEnglish
000305340 082__ $$a600
000305340 1001_ $$0P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031$$aBauer, Fabian$$b0$$eFirst author
000305340 245__ $$aAutomated radiomics model for prediction of therapy response and minimal residual disease from baseline MRI in multiple myeloma.
000305340 260__ $$a[London]$$bSpringer Nature$$c2025
000305340 3367_ $$2DRIVER$$aarticle
000305340 3367_ $$2DataCite$$aOutput Types/Journal article
000305340 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763043331_4079999
000305340 3367_ $$2BibTeX$$aARTICLE
000305340 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305340 3367_ $$00$$2EndNote$$aJournal Article
000305340 500__ $$a#EA:E010#LA:E010#LA:E230# / 15, Article number: 35400 (2025)
000305340 520__ $$aThis multicenter imaging study aimed to establish and validate automated radiomics models predicting therapy response (TR) and minimal residual response (MRD) in newly diagnosed multiple myeloma (MM) from baseline MRI. Retrospectively, 118 MM patients from the GMMG-HD7 trial (EudraCT: 2017-004768-37) with data on TR and/or MRD after induction therapy and baseline MRI were included. Data were split by center into a training set (center 1-2; n = 79) and a test set (center 3-10; n = 39). TR was classified as very good partial response or better versus other. An in-house developed nnU-Net was used to automatically segment pelvic bone marrow for the subsequent extraction of 245 radiomics features and piriformis muscle for normalization. Random forest classifiers were trained using radiomics features only (I), radiomics features with additional confounders (II) or myeloma-relevant clinical features (III), or only clinical features (IV) to predict TR or MRD status. The area under the receiver operating characteristic curve (AUROC) was calculated to assess prediction performance. The prediction model using only radiomics features (I) showed the highest predictive performance for TR on the test set with an AUROC of 0.70. AUROC values for radiomics-based prediction of the MRD status (I-III) ranged from 0.54 to 0.52. In conclusion, our study demonstrated the potential of automated radiomics models from baseline MRI to non-invasively predict TR in MM on an independent, multicentric test set.
000305340 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000305340 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000305340 650_7 $$2Other$$aMRI
000305340 650_7 $$2Other$$aMinimal residual disease.
000305340 650_7 $$2Other$$aMultiple myeloma
000305340 650_7 $$2Other$$aRadiomics
000305340 650_7 $$2Other$$aTherapy response
000305340 650_2 $$2MeSH$$aHumans
000305340 650_2 $$2MeSH$$aMultiple Myeloma: diagnostic imaging
000305340 650_2 $$2MeSH$$aMultiple Myeloma: therapy
000305340 650_2 $$2MeSH$$aMultiple Myeloma: pathology
000305340 650_2 $$2MeSH$$aMultiple Myeloma: drug therapy
000305340 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000305340 650_2 $$2MeSH$$aNeoplasm, Residual: diagnostic imaging
000305340 650_2 $$2MeSH$$aMale
000305340 650_2 $$2MeSH$$aFemale
000305340 650_2 $$2MeSH$$aMiddle Aged
000305340 650_2 $$2MeSH$$aAged
000305340 650_2 $$2MeSH$$aRetrospective Studies
000305340 650_2 $$2MeSH$$aTreatment Outcome
000305340 650_2 $$2MeSH$$aBone Marrow: diagnostic imaging
000305340 650_2 $$2MeSH$$aBone Marrow: pathology
000305340 650_2 $$2MeSH$$aROC Curve
000305340 650_2 $$2MeSH$$aAdult
000305340 650_2 $$2MeSH$$aRadiomics
000305340 7001_ $$aHajiyianni, Marina$$b1
000305340 7001_ $$aWeinhold, Niels$$b2
000305340 7001_ $$0P:(DE-He78)cf4656ab05919cc784af4e9812f5a9fa$$aGrözinger, Martin$$b3$$udkfz
000305340 7001_ $$0P:(DE-He78)05779b8fc2a612fdf8364db690f3480c$$aKächele, Jessica$$b4$$udkfz
000305340 7001_ $$aMenis, Ekaterina$$b5
000305340 7001_ $$aRaab, Marc-Steffen$$b6
000305340 7001_ $$aSauer, Sandra$$b7
000305340 7001_ $$aJauch, Anna$$b8
000305340 7001_ $$aWeber, Tim F$$b9
000305340 7001_ $$aDebic, Manuel$$b10
000305340 7001_ $$aBesemer, Britta$$b11
000305340 7001_ $$aHorger, Marius$$b12
000305340 7001_ $$aAfat, Saif$$b13
000305340 7001_ $$aHoffmann, Martin$$b14
000305340 7001_ $$aHoffend, Johannes$$b15
000305340 7001_ $$aKraemer, Doris$$b16
000305340 7001_ $$aGraeven, Ullrich$$b17
000305340 7001_ $$aRingelstein, Adrian$$b18
000305340 7001_ $$aDürig, Jan$$b19
000305340 7001_ $$aUmutlu, Lale$$b20
000305340 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b21$$udkfz
000305340 7001_ $$aGoldschmidt, Hartmut$$b22
000305340 7001_ $$0P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aMaier-Hein, Klaus$$b23$$udkfz
000305340 7001_ $$0P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDelorme, Stefan$$b24$$udkfz
000305340 7001_ $$aMai, Elias K$$b25
000305340 7001_ $$0P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738$$aWennmann, Markus$$b26$$eLast author$$udkfz
000305340 7001_ $$0P:(DE-He78)64313331bb3bdc0902ff88697f402c92$$aNeher, Peter$$b27$$eLast author$$udkfz
000305340 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-025-13165-2$$gVol. 15, no. 1, p. 35400$$n1$$p35400$$tScientific reports$$v15$$x2045-2322$$y2025
000305340 909CO $$ooai:inrepo02.dkfz.de:305340$$pVDB
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cf4656ab05919cc784af4e9812f5a9fa$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)05779b8fc2a612fdf8364db690f3480c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b21$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3$$aDeutsches Krebsforschungszentrum$$b23$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3e76653311420a51a5faeb80363bd73e$$aDeutsches Krebsforschungszentrum$$b24$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738$$aDeutsches Krebsforschungszentrum$$b26$$kDKFZ
000305340 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)64313331bb3bdc0902ff88697f402c92$$aDeutsches Krebsforschungszentrum$$b27$$kDKFZ
000305340 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000305340 9141_ $$y2025
000305340 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
000305340 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
000305340 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
000305340 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
000305340 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
000305340 9202_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000305340 9202_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x1
000305340 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000305340 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x1
000305340 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000305340 9200_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000305340 980__ $$ajournal
000305340 980__ $$aVDB
000305340 980__ $$aI:(DE-He78)E010-20160331
000305340 980__ $$aI:(DE-He78)E230-20160331
000305340 980__ $$aI:(DE-He78)HD01-20160331
000305340 980__ $$aUNRESTRICTED