000305345 001__ 305345
000305345 005__ 20251230140927.0
000305345 0247_ $$2pmid$$apmid:41078150
000305345 0247_ $$2ISSN$$a1522-2594
000305345 0247_ $$2ISSN$$a0740-3194
000305345 0247_ $$2doi$$aDOI:10.1002/mrm.70114 
000305345 0247_ $$2doi$$aDOI:10.1002/mrm.70114
000305345 0247_ $$2altmetric$$aaltmetric:182626440
000305345 037__ $$aDKFZ-2025-02089
000305345 041__ $$aEnglish
000305345 082__ $$a610
000305345 1001_ $$00009-0009-9184-2206$$aIyyappan Valsala, Praveen$$b0
000305345 245__ $$aHigh-resolution deuterium metabolic imaging of the human brain at 9.4 T using phase-cycled balanced SSFP spectral-spatial acquisitions.
000305345 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2026
000305345 3367_ $$2DRIVER$$aarticle
000305345 3367_ $$2DataCite$$aOutput Types/Journal article
000305345 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767100121_1386405
000305345 3367_ $$2BibTeX$$aARTICLE
000305345 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305345 3367_ $$00$$2EndNote$$aJournal Article
000305345 500__ $$a2026 Mar;95(3):1304-1322. doi: 10.1002/mrm.70114. Epub 2025 Oct 13
000305345 520__ $$aThe aim was to improve the sensitivity and robustness against B0 inhomogeneities of deuterium metabolic imaging (DMI) using phase-cycled balanced SSFP (bSSFP) methods at 9.4 T.We investigated two variants of phase-cycled bSSFP acquisitions, namely uniformly weighted multi-echo and acquisition-weighted chemical shift imaging (CSI) to improve the SNR of DMI in the brain after oral [6,6'-2H2]-glucose intake. Phase-cycling was introduced to reduce the off-resonance sensitivity of bSSFP, incurring a moderate SNR loss. Two SNR optimal methods for obtaining metabolite amplitudes from the phase-cycled bSSFP data were proposed. The SNR performance of the two bSSFP variants was compared with the SNR-optimized vendor's standard CSI. Additionally, in vivo T1 and T2 of deuterium metabolites were estimated.High-resolution whole-brain dynamic DMI maps were obtained for all acquisitions. The CSI variant of phase-cycled bSSFP achieved an average SNR increase of 16% and 25% for glucose and glutamate + glutamine (Glx), respectively, compared to the SNR-optimized vendor's standard CSI. Phase-cycling improved the bSSFP metabolite estimation and provided additional spectral encoding at the cost of a 10% to 20% SNR loss. Compared to the CSI variant of bSSFP acquisition, the multi-echo variant exhibited up to 35% lower SNR performance because of uniform k-space weighting and less efficient readout. However, it achieved higher resolutions than acquisition-weighted CSI protocols and showed several qualitative improvements.We demonstrated the feasibility of using two phase-cycled bSSFP acquisitions for off-resonance insensitive high-resolution [6,6'-2H2]-glucose DMI studies in the human brain. bSSFP acquisitions have potential to improve the sensitivity of DMI despite the SNR loss of phase-cycling and other human scanner constraints.
000305345 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000305345 588__ $$aDataset connected to DataCite, PubMed, , Journals: inrepo02.dkfz.de
000305345 650_7 $$2Other$$aIDEAL
000305345 650_7 $$2Other$$aSNR
000305345 650_7 $$2Other$$abSSFP
000305345 650_7 $$2Other$$adeuterium metabolic imaging
000305345 650_7 $$2Other$$aultra‐high‐field
000305345 7001_ $$00000-0002-6137-9590$$aPohmann, Rolf$$b1
000305345 7001_ $$00000-0002-4589-6483$$aHeule, Rahel$$b2
000305345 7001_ $$00000-0002-3024-0545$$aSolomakha, Georgiy A$$b3
000305345 7001_ $$00000-0001-7608-0869$$aAvdievich, Nikolai I$$b4
000305345 7001_ $$aEngelmann, Jörn$$b5
000305345 7001_ $$0P:(DE-HGF)0$$aKuebler, Laura$$b6
000305345 7001_ $$0P:(DE-He78)aa2cd10f8b1dcaa55db6a9a34fa2ef3e$$aMartins, André$$b7$$udkfz
000305345 7001_ $$00000-0001-6316-8773$$aScheffler, Klaus$$b8
000305345 773__ $$0PERI:(DE-600)1493786-4$$aDOI:10.1002/mrm.70114$$n3$$p1304-1322$$tMagnetic resonance in medicine$$v95$$x1522-2594$$y2026
000305345 909CO $$ooai:inrepo02.dkfz.de:305345$$pVDB
000305345 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000305345 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)aa2cd10f8b1dcaa55db6a9a34fa2ef3e$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000305345 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000305345 9141_ $$y2025
000305345 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000305345 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000305345 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000305345 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000305345 9201_ $$0I:(DE-He78)TU01-20160331$$kTU01$$lDKTK Koordinierungsstelle Tübingen$$x0
000305345 980__ $$ajournal
000305345 980__ $$aVDB
000305345 980__ $$aI:(DE-He78)TU01-20160331
000305345 980__ $$aUNRESTRICTED