000305374 001__ 305374
000305374 005__ 20251019023236.0
000305374 0247_ $$2doi$$a10.1038/s41746-025-02016-z
000305374 0247_ $$2pmid$$apmid:41087591
000305374 0247_ $$2altmetric$$aaltmetric:182597448
000305374 037__ $$aDKFZ-2025-02115
000305374 041__ $$aEnglish
000305374 082__ $$a610
000305374 1001_ $$aBorys, Katarzyna$$b0
000305374 245__ $$aLeveraging Sarcopenia index by automated CT body composition analysis for pan cancer prognostic stratification.
000305374 260__ $$a[Basingstoke]$$bMacmillan Publishers Limited$$c2025
000305374 3367_ $$2DRIVER$$aarticle
000305374 3367_ $$2DataCite$$aOutput Types/Journal article
000305374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760526046_2294
000305374 3367_ $$2BibTeX$$aARTICLE
000305374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305374 3367_ $$00$$2EndNote$$aJournal Article
000305374 520__ $$aThis study evaluates the CT-based volumetric sarcopenia index (SI) as a baseline prognostic factor for overall survival (OS) in 10,340 solid tumor patients (40% female). Automated body composition analysis was applied to internal baseline abdomen CTs and to thorax CTs. SI's prognostic value was assessed using multivariable Cox proportional hazards regression, accelerated failure time models, and gradient-boosted machine learning. External validation included 439 patients (40% female). Higher SI was associated with prolonged OS in the internal abdomen (HR 0.56, 95% CI 0.52-0.59; P < 0.001) and thorax cohorts (HR 0.40, 95% CI 0.37-0.43; P < 0.001), as well as in the external validation cohort (HR 0.56, 95% CI 0.41-0.79; P < 0.001). Machine learning models identified SI as the most important factor in survival prediction. Our results demonstrate SI's potential as a fully automated body composition feature for standard oncologic workflows.
000305374 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000305374 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000305374 7001_ $$aHaubold, Johannes$$b1
000305374 7001_ $$aKeyl, Julius$$b2
000305374 7001_ $$aBali, Maria A$$b3
000305374 7001_ $$aDe Angelis, Riccardo$$b4
000305374 7001_ $$aBoni, Kévin Brou$$b5
000305374 7001_ $$aCoquelet, Nicolas$$b6
000305374 7001_ $$aKohnke, Judith$$b7
000305374 7001_ $$aBaldini, Giulia$$b8
000305374 7001_ $$aKroll, Lennard$$b9
000305374 7001_ $$aSchramm, Sara$$b10
000305374 7001_ $$aStang, Andreas$$b11
000305374 7001_ $$aMalamutmann, Eugen$$b12
000305374 7001_ $$aKleesiek, Jens$$b13
000305374 7001_ $$aKim, Moon$$b14
000305374 7001_ $$aKasper, Stefan$$b15
000305374 7001_ $$0P:(DE-He78)026e0a55b968f360a3c349689ce8a99c$$aSiveke, Jens$$b16$$udkfz
000305374 7001_ $$aWiesweg, Marcel$$b17
000305374 7001_ $$aMerkel-Jens, Anja$$b18
000305374 7001_ $$aSchaarschmidt, Benedikt M$$b19
000305374 7001_ $$aGruenwald, Viktor$$b20
000305374 7001_ $$aBauer, Sebastian$$b21
000305374 7001_ $$aOezcelik, Arzu$$b22
000305374 7001_ $$aBölükbas, Servet$$b23
000305374 7001_ $$0P:(DE-HGF)0$$aHerrmann, Ken$$b24
000305374 7001_ $$aKimmig, Rainer$$b25
000305374 7001_ $$aLang, Stephan$$b26
000305374 7001_ $$aTreckmann, Jürgen$$b27
000305374 7001_ $$aStuschke, Martin$$b28
000305374 7001_ $$aHadaschik, Boris$$b29
000305374 7001_ $$aUmutlu, Lale$$b30
000305374 7001_ $$aForsting, Michael$$b31
000305374 7001_ $$aSchadendorf, Dirk$$b32
000305374 7001_ $$aFriedrich, Christoph M$$b33
000305374 7001_ $$aSchuler, Martin$$b34
000305374 7001_ $$aHosch, René$$b35
000305374 7001_ $$aNensa, Felix$$b36
000305374 773__ $$0PERI:(DE-600)2925182-5$$a10.1038/s41746-025-02016-z$$gVol. 8, no. 1, p. 611$$n1$$p611$$tnpj digital medicine$$v8$$x2398-6352$$y2025
000305374 909CO $$ooai:inrepo02.dkfz.de:305374$$pVDB
000305374 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)026e0a55b968f360a3c349689ce8a99c$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000305374 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b24$$kDKFZ
000305374 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000305374 9141_ $$y2025
000305374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ DIGIT MED : 2022$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:42:56Z
000305374 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:42:56Z
000305374 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:42:56Z
000305374 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:42:56Z
000305374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNPJ DIGIT MED : 2022$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
000305374 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
000305374 9201_ $$0I:(DE-He78)ED01-20160331$$kED01$$lDKTK Koordinierungsstelle Essen/Düsseldorf$$x0
000305374 980__ $$ajournal
000305374 980__ $$aVDB
000305374 980__ $$aI:(DE-He78)ED01-20160331
000305374 980__ $$aUNRESTRICTED