001     305531
005     20251028115603.0
024 7 _ |a 10.1016/j.ijrobp.2025.10.012
|2 doi
024 7 _ |a pmid:41135710
|2 pmid
024 7 _ |a 0360-3016
|2 ISSN
024 7 _ |a 1879-355X
|2 ISSN
037 _ _ |a DKFZ-2025-02205
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Petrich, Christian
|b 0
245 _ _ |a Commissioning, characterization and first high dose rate irradiations at a compact X-ray tube for microbeam and minibeam radiation therapy.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761574305_3448744
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a epub
520 _ _ |a Minibeam and microbeam radiation therapy promise improved treatment outcomes through reduced normal tissue toxicity at better tumor control rates. The lack of suitable compact radiation sources limits the clinical application of minibeams to superficial tumors and renders it impossible for microbeams. We developed and constructed the first prototype of a compact line-focus X-ray tube (LFXT) with technology potentially suitable for clinical translation of minibeams and microbeams.We give an overview of the commissioning process preceding the first operation, present optical and radiological focal spot characterization methods, and dosimetric measurements. Additionally, we report on first preclinical in vitro cell and in vivo mouse brain irradiations conducted with the LFXT prototype.The LFXT was high-voltage conditioned up to 300 kV. The focal spot characterization resulted in a strongly eccentric electron distribution with a width of 72.3 μm. Dosimetry showed sharp microbeam dose profiles with steep lateral penumbras and a peak-to-valley dose ratio above 10 throughout a 70 mm thick PMMA phantom. An open-field dose rate of 4.3 Gy/s was measured at an acceleration voltage of 150 kV and a beam current of 17.4 mA at 150 mm distance from the focal spot. In vitro and in vivo experiments demonstrated the feasibility of the LFXT for minibeam and microbeam applications with field sizes of 1.5 - 2 cm. The mice displayed no observable side effects throughout the follow-up period after whole-brain 260 μm-minibeam irradiation.We successfully constructed and commissioned the first proof-of-concept LFXT prototype. Dosimetric characterizations of the achieved microbeam field showed the superiority of the LFXT compared to conventional X-ray tubes in terms of beam quality. In future developments, the remaining limitations of the prototype will be addressed, paving the way for improved minibeam and first ever microbeam radiation therapy in a clinical setting.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Glioblastoma Multiforme
|2 Other
650 _ 7 |a Line-focus X-ray tube
|2 Other
650 _ 7 |a Microbeam radiation therapy
|2 Other
650 _ 7 |a Minibeam radiation therapy
|2 Other
650 _ 7 |a Preclinical study
|2 Other
650 _ 7 |a Spatially fractionated radiation therapy
|2 Other
650 _ 7 |a X-ray source development
|2 Other
700 1 _ |a Winter, Johanna
|b 1
700 1 _ |a Dimroth, Anton
|b 2
700 1 _ |a Stolz, Jessica
|b 3
700 1 _ |a Beiser, Thomas
|b 4
700 1 _ |a Dehn, Monika
|b 5
700 1 _ |a Frignani, Jacopo
|b 6
700 1 _ |a Combs, Stephanie E
|b 7
700 1 _ |a Schilling, Franz
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Natour, Ghaleb
|b 9
700 1 _ |a Aulenbacher, Kurt
|b 10
700 1 _ |a Raulefs, Susanne
|b 11
700 1 _ |a Schmid, Thomas E
|b 12
700 1 _ |a Wilkens, Jan J
|b 13
700 1 _ |a Bartzsch, Stefan
|b 14
773 _ _ |a 10.1016/j.ijrobp.2025.10.012
|g p. S0360301625063989
|0 PERI:(DE-600)1500486-7
|p nn
|t International journal of radiation oncology, biology, physics
|v nn
|y 2025
|x 0360-3016
909 C O |o oai:inrepo02.dkfz.de:305531
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J RADIAT ONCOL : 2022
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J RADIAT ONCOL : 2022
|d 2024-12-31
920 1 _ |0 I:(DE-He78)MU01-20160331
|k MU01
|l DKTK Koordinierungsstelle München
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)MU01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21