001     305532
005     20251028115603.0
024 7 _ |a 10.1016/j.jtho.2025.10.010
|2 doi
024 7 _ |a pmid:41135642
|2 pmid
024 7 _ |a 1556-0864
|2 ISSN
024 7 _ |a 1556-1380
|2 ISSN
037 _ _ |a DKFZ-2025-02206
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Allgäuer, M.
|b 0
245 _ _ |a Advancing Lung Cancer Staging: Integrating IASLC Recommendations and Bioinformatics to Delineate Tumor Origins.
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761574290_3448747
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a epub
520 _ _ |a Accurate distinction between separate primary lung carcinomas (SPLCs) and intrapulmonary metastases (IPMs) is essential for staging and treatment of multifocal non-small cell lung carcinoma (NSCLC). Next-generation sequencing (NGS) enables assessment of clonal relatedness. The proposed IASLC algorithm integrates histological and molecular data, though its clinical utility is yet to be validated.We focused on the molecular component of the algorithm and assessed 240 tumor pairs from 120 patients with formalin-fixed paraffin-embedded (FFPE) tumor samples that underwent small-scale gene panel NGS testing (31-54 genes) within routine clinical care. Most tumors were adenocarcinomas (n=222), 18 tumors other NSCLC subtypes. Inconclusive pairs by molecular classification were subjected to large-scale panel analyses (531 genes). Additionally, we developed a bioinformatic method to complement and refine the IASLC method.In total 22 tumor pairs (18%) remained inconclusive and 16 (13%) were classified ambiguous (probable SPLCs) using the molecular IASLC method. Re-sequencing classified 9 of 22 inconclusive pairs as IPMs. Using a newly developed bioinformatic method for clonality classification incorporating likelihood ratios of mutational prevalence and small-scale sequencing, only 3 pairs remained inconclusive (2%). Tumors classified as SPLCs had a significantly longer overall survival than IPMs.Small-scale panel sequencing of biopsy material allows unambiguous clonality determination in 3 of 4 cases. Large-scale sequencing resolves about half of inconclusive cases. Our bioinformatic method reduces inconclusive pairs to 2% even with small-scale NGS. It is made publicly available as a Shiny App. Clonality is reflected in survival data and therefore pivotal in daily clinical practice.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a (max. n=5) Multiple pulmonary tumors
|2 Other
650 _ 7 |a IASLC recommendations (2024)
|2 Other
650 _ 7 |a Next Generation Sequencing (NGS)
|2 Other
650 _ 7 |a clonality classification
|2 Other
700 1 _ |a Kluck, K.
|b 1
700 1 _ |a Christopoulos, P.
|b 2
700 1 _ |a Ball, M.
|b 3
700 1 _ |a Volckmar, A-L
|b 4
700 1 _ |a Radonic, T.
|b 5
700 1 _ |a Bubendorf, L.
|b 6
700 1 _ |a Hofman, P.
|b 7
700 1 _ |a Heußel, C. P.
|b 8
700 1 _ |a Winter, H.
|b 9
700 1 _ |a Herth, F.
|b 10
700 1 _ |a Thomas, M.
|b 11
700 1 _ |a Ylstra, B.
|b 12
700 1 _ |a Peters, S.
|b 13
700 1 _ |a Schirmacher, P.
|b 14
700 1 _ |a Kazdal, D.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Budczies, J.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Stenzinger, A.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kirchner, M.
|b 18
773 _ _ |a 10.1016/j.jtho.2025.10.010
|g p. S1556086425028576
|0 PERI:(DE-600)2223437-8
|p nn
|t Journal of thoracic oncology
|v nn
|y 2025
|x 1556-0864
909 C O |o oai:inrepo02.dkfz.de:305532
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THORAC ONCOL : 2022
|d 2024-12-13
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b J THORAC ONCOL : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21