001     305573
005     20251030115607.0
024 7 _ |a 10.1002/bimj.70087
|2 doi
024 7 _ |a pmid:41146443
|2 pmid
024 7 _ |a pmc:PMC12559784
|2 pmc
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
037 _ _ |a DKFZ-2025-02235
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Miah, Kaya
|0 P:(DE-He78)b97fc5666ea8f9db9ef499de6b2397cf
|b 0
|e First author
|u dkfz
245 _ _ |a Variable Selection via Fused Sparse-Group Lasso Penalized Multi-state Models Incorporating Molecular Data.
260 _ _ |a Berlin
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761821567_4133647
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:C060#
520 _ _ |a In multi-state models based on high-dimensional data, effective modeling strategies are required to determine an optimal, ideally parsimonious model. In particular, linking covariate effects across transitions is needed to conduct joint variable selection. A useful technique to reduce model complexity is to address homogeneous covariate effects for distinct transitions. We integrate this approach to data-driven variable selection by extended regularization methods within multi-state model building. We propose the fused sparse-group lasso (FSGL) penalized Cox-type regression in the framework of multi-state models combining the penalization concepts of pairwise differences of covariate effects along with transition-wise grouping. For optimization, we adapt the alternating direction method of multipliers (ADMM) algorithm to transition-specific hazards regression in the multi-state setting. In a simulation study and application to acute myeloid leukemia (AML) data, we evaluate the algorithm's ability to select a sparse model incorporating relevant transition-specific effects and similar cross-transition effects. We investigate settings in which the combined penalty is beneficial compared to global lasso regularization. Clinical Trial Registration: The AMLSG 09-09 trial is registered with ClinicalTrials.gov (NCT00893399) and has been completed.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cox‐type regression
|2 Other
650 _ 7 |a Markov models
|2 Other
650 _ 7 |a high‐dimensional data
|2 Other
650 _ 7 |a regularization
|2 Other
650 _ 7 |a transition‐specific hazards
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Leukemia, Myeloid, Acute: drug therapy
|2 MeSH
650 _ 2 |a Models, Statistical
|2 MeSH
650 _ 2 |a Biometry: methods
|2 MeSH
650 _ 2 |a Proportional Hazards Models
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
700 1 _ |a Goeman, Jelle J
|0 0000-0003-4283-0259
|b 1
700 1 _ |a Putter, Hein
|0 0000-0001-5395-1422
|b 2
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 3
|u dkfz
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1002/bimj.70087
|g Vol. 67, no. 6, p. e70087
|0 PERI:(DE-600)1479920-0
|n 6
|p e70087
|t Biometrical journal
|v 67
|y 2025
|x 0323-3847
909 C O |o oai:inrepo02.dkfz.de:305573
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b97fc5666ea8f9db9ef499de6b2397cf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21