001     305605
005     20260108113230.0
024 7 _ |a 10.1016/j.cmet.2025.10.003
|2 doi
024 7 _ |a pmid:41175867
|2 pmid
024 7 _ |a 1550-4131
|2 ISSN
024 7 _ |a 1932-7420
|2 ISSN
024 7 _ |a altmetric:183310584
|2 altmetric
037 _ _ |a DKFZ-2025-02255
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Drekolia, Maria-Kyriaki
|b 0
245 _ _ |a Cystine import and oxidative catabolism fuel vascular growth and repair via nutrient-responsive histone acetylation.
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767868313_3506151
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 38, Issue 1, 6 January 2026, Pages 115-134.e20
520 _ _ |a Endothelial metabolism underpins tissue regeneration, health, and longevity. We uncover a nuclear oxidative catabolic pathway linking cystine to gene regulation. Cells preparing to proliferate upregulate the SLC7A11 transporter to import cystine, which is oxidatively catabolized by cystathionine-γ-lyase (CSE) in the nucleus. This generates acetyl units via pyruvate dehydrogenase, driving site-specific histone H3 acetylation and chromatin remodeling that sustain endothelial transcription and proliferation. Combined loss of SLC7A11 and CSE abolishes cystine oxidative and reductive metabolism and causes embryonic lethality, whereas single deletions reveal distinct effects. SLC7A11 deficiency triggers compensatory cysteine de novo biosynthesis, partially maintaining angiogenesis, while CSE deletion disrupts nuclear cystine oxidative catabolism, transcription, and vessel formation. Therapeutically, cystine supplementation promotes vascular repair in retinopathy of prematurity, myocardial infarction, and injury in aging. These findings establish the role of cystine nuclear oxidative catabolism as a fundamental metabolic axis coupling nutrient utilization to gene regulation, with implications for vascular regeneration.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CSE
|2 Other
650 _ 7 |a SLC7A11
|2 Other
650 _ 7 |a aging
|2 Other
650 _ 7 |a cystine
|2 Other
650 _ 7 |a epigenetics
|2 Other
650 _ 7 |a vascular growth
|2 Other
700 1 _ |a Mettner, Janina
|b 1
700 1 _ |a Wang, Daiyu
|b 2
700 1 _ |a Delgado Lagos, Fredy
|b 3
700 1 _ |a Koch, Christian
|b 4
700 1 _ |a Hecker, Dennis
|b 5
700 1 _ |a Eresch, Jeanette
|b 6
700 1 _ |a Mao, Yifang
|b 7
700 1 _ |a Bähr, Marion
|0 P:(DE-He78)cfd12c2b002e4edb674103723a470712
|b 8
|u dkfz
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 9
|u dkfz
700 1 _ |a Cordero, Julio
|b 10
700 1 _ |a Wittig, Janina
|b 11
700 1 _ |a Zhang, Boran
|b 12
700 1 _ |a Cui, Hanyu
|b 13
700 1 _ |a Li, Xiaoming
|b 14
700 1 _ |a Oo, James A
|b 15
700 1 _ |a Weigert, Andreas
|b 16
700 1 _ |a Siragusa, Mauro
|b 17
700 1 _ |a Klatt, Stephan
|b 18
700 1 _ |a Fleming, Ingrid
|b 19
700 1 _ |a Günther, Stefan
|b 20
700 1 _ |a Looso, Mario
|b 21
700 1 _ |a Brandes, Ralf P
|b 22
700 1 _ |a Langer, Harald F
|b 23
700 1 _ |a Papapetropoulos, Andreas
|b 24
700 1 _ |a Singhal, Mahak
|b 25
700 1 _ |a Schulz, Marcel H
|b 26
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 27
|u dkfz
700 1 _ |a Heineke, Joerg
|b 28
700 1 _ |a Dobreva, Gergana
|b 29
700 1 _ |a Hu, Jiong
|b 30
700 1 _ |a Bibli, Sofia-Iris
|b 31
773 _ _ |a 10.1016/j.cmet.2025.10.003
|g p. S1550413125004371
|0 PERI:(DE-600)2174469-5
|n 1
|p 115-134.e20
|t Cell metabolism
|v 38
|y 2026
|x 1550-4131
909 C O |p VDB
|o oai:inrepo02.dkfz.de:305605
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)cfd12c2b002e4edb674103723a470712
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL METAB : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b CELL METAB : 2022
|d 2024-12-28
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21