001     305685
005     20251111115731.0
024 7 _ |a 10.1038/s41698-025-01148-5
|2 doi
024 7 _ |a pmid:41203783
|2 pmid
024 7 _ |a pmc:PMC12594912
|2 pmc
037 _ _ |a DKFZ-2025-02308
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hertel, Alexander
|b 0
245 _ _ |a Targeting tumoral heterogeneity in lung cancer: a novel, CT-texture-guided targeted biopsy approach with exome sequencing.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762779826_2549712
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid tumors like lung cancer show significant mutational heterogeneity. A biopsy captures only focal aspects, limiting conclusions about overall tumor biology. This prospective study correlated CT-based radiomics features with genomic profiles to optimize biopsy site selection. Lung cancer patients underwent CT imaging, radiomics analysis, targeted biopsies, and whole-exome sequencing. Twelve non-redundant features were extracted, with JointEntropy guiding biopsy targeting. In 7 of 12 patients, over 10% of mutations were exclusive to one biopsy. Clonal reconstruction showed heterogeneous profiles with over two subclonal processes in 67% of cases. Unsupervised clustering of radiomics features revealed two distinct groups separated by entropy features, of which the entropy-rich cluster was associated with STK11 mutations. Our study demonstrates that integrating radiomics with localized genomic analysis enhances the understanding of tumoral heterogeneity and may improve the targeting of advanced tumor regions for diagnostic sampling.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Streuer, Alexander
|b 1
700 1 _ |a Diehl, Steffen
|b 2
700 1 _ |a Boch, Tobias
|0 P:(DE-He78)69710617a4b47b0f55eec41c4d794eeb
|b 3
700 1 _ |a Nörenberg, Dominik
|b 4
700 1 _ |a Strittmatter, Anika
|b 5
700 1 _ |a Zöllner, Frank G
|b 6
700 1 _ |a Schoenberg, Stefan O
|b 7
700 1 _ |a Hofmann, Wolf-Karsten
|b 8
700 1 _ |a Loges, Sonja
|0 P:(DE-He78)1eee9e84c0f8c90a97fe40b6e8252a23
|b 9
|u dkfz
700 1 _ |a Nowak, Daniel
|b 10
700 1 _ |a Froelich, Matthias F
|b 11
773 _ _ |a 10.1038/s41698-025-01148-5
|g Vol. 9, no. 1, p. 342
|0 PERI:(DE-600)2891458-2
|n 1
|p 342
|t npj precision oncology
|v 9
|y 2025
|x 2397-768X
909 C O |o oai:inrepo02.dkfz.de:305685
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)69710617a4b47b0f55eec41c4d794eeb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)1eee9e84c0f8c90a97fe40b6e8252a23
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ PRECIS ONCOL : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:43:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:43:48Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:43:48Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-04-10T15:43:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ PRECIS ONCOL : 2022
|d 2024-12-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-30
920 1 _ |0 I:(DE-He78)A420-20160331
|k A420
|l Personalisierte Medizinische Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A420-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21