001     305735
005     20251112115732.0
024 7 _ |a 10.1093/jnci/djaf308
|2 doi
024 7 _ |a pmid:41206949
|2 pmid
024 7 _ |a 0027-8874
|2 ISSN
024 7 _ |a 1460-2105
|2 ISSN
024 7 _ |a 1475-4029
|2 ISSN
037 _ _ |a DKFZ-2025-02358
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhang, Ting
|b 0
245 _ _ |a Different diabetes types and pancreatic ductal adenocarcinoma: a Mendelian randomization and pathway/gene-set analysis.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762863334_2808954
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1460-2105 / epub
520 _ _ |a The associations between different types of diabetes, characterized by distinct pathophysiology and genetic architecture, and pancreatic ductal adenocarcinoma (PDAC) risk are not understood.We investigated associations of genetic susceptibility to type 2 diabetes (T2D), eight T2D mechanistic clusters, type 1 diabetes (T1D), and maturity-onset diabetes of the young (MODY) with PDAC risk. We used genome-wide association study (GWAS) summary-level statistics for T2D (242,283 cases, 1,569,734 controls), T1D (18,942 cases, 501,638 controls), and PDAC (10,244 cases and 360,535 controls) in individuals of European ancestry.Two-sample Mendelian randomization (MR) using the Robust Adjusted Profile Score (MR-RAPS) method indicated that genetically predicted T2D was associated with PDAC risk (OR = 1.10; 95% CI 1.05-1.15), particularly the T2D obesity (OR = 1.28; 95% CI 1.15-1.42) and lipodystrophy (OR = 1.25; 95% CI 1.03-1.51) clusters. No association was observed for T1D with PDAC risk (OR = 1.01; 95% CI 0.99-1.02). Pathway/gene-set analysis using the summary-based Adaptive Rank Truncated Product (sARTP) method revealed a significant association between the MODY gene-sets and PDAC risk (P = 1.5 × 10-8), which remained after excluding 20 known PDAC GWAS loci (P = 7.6 × 10-4). HNF1A, FOXA3, and HNF4A were the top contributing genes after excluding the previously identified GWAS loci regions.Our results from this genetic association study support that T2D, particularly the obesity and lipodystrophy mechanistic clusters, and MODY genomic susceptibility regions play a role in the etiology of PDAC.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Maturity-onset diabetes of the young
|2 Other
650 _ 7 |a Mendelian Randomization
|2 Other
650 _ 7 |a Pancreatic ductal adenocarcinoma
|2 Other
650 _ 7 |a Type 1 Diabetes
|2 Other
650 _ 7 |a Type 2 Diabetes
|2 Other
700 1 _ |a Hua, Xing
|b 1
700 1 _ |a Mohindroo, Chirayu
|b 2
700 1 _ |a Wang, Xiaoyu
|b 3
700 1 _ |a Dutta, Diptavo
|b 4
700 1 _ |a Liu, Jia
|b 5
700 1 _ |a Katta, Shilpa
|b 6
700 1 _ |a Li, Shengchao A
|b 7
700 1 _ |a Wang, Jiahui
|b 8
700 1 _ |a Antwi, Samuel O
|b 9
700 1 _ |a Arslan, Alan A
|b 10
700 1 _ |a Beane Freeman, Laura E
|b 11
700 1 _ |a Bracci, Paige M
|b 12
700 1 _ |a Canzian, Federico
|0 P:(DE-He78)5323704270b6393dcea70186ffd86bca
|b 13
|u dkfz
700 1 _ |a Du, Mengmeng
|b 14
700 1 _ |a Gallinger, Steven
|b 15
700 1 _ |a Goodman, Phyllis J
|b 16
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 17
|u dkfz
700 1 _ |a Kooperberg, Charles
|b 18
700 1 _ |a Le Marchand, Loic
|b 19
700 1 _ |a Neale, Rachel E
|b 20
700 1 _ |a Patel, Alpa V
|b 21
700 1 _ |a Perdomo, Sandra
|b 22
700 1 _ |a Shu, Xiao-Ou
|b 23
700 1 _ |a Visvanathan, Kala
|b 24
700 1 _ |a Van Den Eeden, Stephen K
|b 25
700 1 _ |a White, Emily
|b 26
700 1 _ |a Zheng, Wei
|b 27
700 1 _ |a Albanes, Demetrius
|b 28
700 1 _ |a Andreotti, Gabriella
|b 29
700 1 _ |a Bamlet, William R
|b 30
700 1 _ |a Brennan, Paul
|b 31
700 1 _ |a Buring, Julie E
|b 32
700 1 _ |a Chanock, Stephen J
|b 33
700 1 _ |a Chen, Yu
|b 34
700 1 _ |a Darst, Burcu
|b 35
700 1 _ |a Ferrari, Pietro
|b 36
700 1 _ |a Giovannucci, Edward L
|b 37
700 1 _ |a Goggins, Michael
|b 38
700 1 _ |a Haiman, Christopher
|b 39
700 1 _ |a Hassan, Manal
|b 40
700 1 _ |a Holly, Elizabeth A
|b 41
700 1 _ |a Hung, Rayjean J
|b 42
700 1 _ |a Jones, Miranda R
|b 43
700 1 _ |a Kraft, Peter
|b 44
700 1 _ |a Kurtz, Robert C
|b 45
700 1 _ |a Malats, Núria
|b 46
700 1 _ |a Moore, Steven C
|b 47
700 1 _ |a Ng, Kimmie
|b 48
700 1 _ |a Oberg, Ann L
|b 49
700 1 _ |a Orlow, Irene
|b 50
700 1 _ |a Peters, Ulrike
|b 51
700 1 _ |a Porta, Miquel
|b 52
700 1 _ |a Rabe, Kari G
|b 53
700 1 _ |a Rothman, Nathaniel
|b 54
700 1 _ |a Sánchez, Maria-José
|b 55
700 1 _ |a Sesso, Howard D
|b 56
700 1 _ |a Silverman, Debra T
|b 57
700 1 _ |a Southey, Melissa C
|b 58
700 1 _ |a Um, Caroline Y
|b 59
700 1 _ |a Yarmolinsky, James
|b 60
700 1 _ |a Yu, Herbert
|b 61
700 1 _ |a Yuan, Chen
|b 62
700 1 _ |a Zhong, Jun
|b 63
700 1 _ |a Wolpin, Brian M
|b 64
700 1 _ |a Risch, Harvey A
|b 65
700 1 _ |a Amundadottir, Laufey T
|b 66
700 1 _ |a Klein, Alison P
|b 67
700 1 _ |a Yu, Kai
|b 68
700 1 _ |a Zhang, Haoyu
|b 69
700 1 _ |a Stolzenberg-Solomon, Rachael Z
|b 70
773 _ _ |a 10.1093/jnci/djaf308
|g p. djaf308
|0 PERI:(DE-600)1465951-7
|p nn
|t Journal of the National Cancer Institute
|v nn
|y 2025
|x 0027-8874
909 C O |o oai:inrepo02.dkfz.de:305735
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)5323704270b6393dcea70186ffd86bca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JNCI-J NATL CANCER I : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b JNCI-J NATL CANCER I : 2022
|d 2024-12-28
920 1 _ |0 I:(DE-He78)C055-20160331
|k C055
|l Genomische Epidemiologie
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C055-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21