000306207 001__ 306207
000306207 005__ 20251212115818.0
000306207 0247_ $$2doi$$a10.1016/j.ejso.2025.111174
000306207 0247_ $$2pmid$$apmid:41240795
000306207 0247_ $$2ISSN$$a0748-7983
000306207 0247_ $$2ISSN$$a1532-2157
000306207 037__ $$aDKFZ-2025-02436
000306207 041__ $$aEnglish
000306207 082__ $$a610
000306207 1001_ $$aBrandenburg, Johanna M$$b0
000306207 245__ $$aSurgical workflow analysis for Surgomics and context-aware assistance in robot-assisted minimally invasive esophagectomy (RAMIE): a retrospective, single-arm, multicenter annotation and machine learning study.
000306207 260__ $$aBurlington, Mass.$$bHarcourt$$c2026
000306207 3367_ $$2DRIVER$$aarticle
000306207 3367_ $$2DataCite$$aOutput Types/Journal article
000306207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765537076_396855
000306207 3367_ $$2BibTeX$$aARTICLE
000306207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000306207 3367_ $$00$$2EndNote$$aJournal Article
000306207 500__ $$aVolume 52, Issue 1, January 2026, 111174
000306207 520__ $$aRobot-assisted minimally invasive esophagectomy (RAMIE) is a complex procedure that may benefit from workflow analysis for context-aware assistance and surgical data science. This study aimed to model the RAMIE workflow, validate the applicability of the obtained workflow model in the operating room (OR) and retrospectively assess its generalizability across three academic centers using video data and automated workflow analysis with machine learning (ML).A RAMIE workflow model was developed based on currently available literature, participatory OR observation, and expert interviews. This model was formalized to be included into a checklist tool to document the workflow live in the OR. To investigate generalizability of the workflow model, the surgical phases of 36 RAMIE videos from three different academic hospitals were retrospectively annotated. Based on this data set, a ML model was trained and tested within a six-fold cross validation.Ten surgical phases with 60 underlying steps were identified for RAMIE. The applicability of the workflow model was validated with live documentation in the OR. Multicenter video annotations revealed significant inter-institutional differences in the duration of all ten RAMIE phases. The ML model for automatic phase recognition showed an accuracy of 0.872 ± 0.091 and an f1-score of 0.872 ± 0.082 over all videos. The center with the best performing videos achieved a mean accuracy of 0.919 ± 0.036.The RAMIE workflow was successfully modeled and validated in a retrospective multicenter setting. Despite high variability in phase duration between surgical centers, ML-based phase recognition achieved highly promising results.
000306207 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000306207 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000306207 650_7 $$2Other$$aArtificial intelligence
000306207 650_7 $$2Other$$aMachine learning
000306207 650_7 $$2Other$$aPrecision medicine
000306207 650_7 $$2Other$$aRobot-assisted surgery
000306207 650_7 $$2Other$$aSurgical data science
000306207 650_7 $$2Other$$aSurgomics
000306207 7001_ $$aSchulze, André$$b1
000306207 7001_ $$aJenke, Alexander C$$b2
000306207 7001_ $$aBhasker, Nithya$$b3
000306207 7001_ $$aBleser, Noelle$$b4
000306207 7001_ $$aJunger, Denise$$b5
000306207 7001_ $$aStern, Antonia$$b6
000306207 7001_ $$aRivoir, Dominik$$b7
000306207 7001_ $$aNaderi, Hamid$$b8
000306207 7001_ $$aFritz-Kebede, Fleur$$b9
000306207 7001_ $$aBurgert, Oliver$$b10
000306207 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b11$$udkfz
000306207 7001_ $$aMündermann, Lars$$b12
000306207 7001_ $$aBodenstedt, Sebastian$$b13
000306207 7001_ $$aSpeidel, Stefanie$$b14
000306207 7001_ $$aLozanovski, Vladimir J$$b15
000306207 7001_ $$aGrimminger, Peter P$$b16
000306207 7001_ $$aBilleter, Adrian$$b17
000306207 7001_ $$aKlotz, Rosa$$b18
000306207 7001_ $$aWeitz, Jürgen$$b19
000306207 7001_ $$aDistler, Marius$$b20
000306207 7001_ $$aMüller-Stich, Beat P$$b21
000306207 7001_ $$aWagner, Martin$$b22
000306207 773__ $$0PERI:(DE-600)2002481-2$$a10.1016/j.ejso.2025.111174$$gVol. 52, no. 1, p. 111174 -$$n1$$p111174$$tEuropean journal of surgical oncology$$v52$$x0748-7983$$y2026
000306207 909CO $$ooai:inrepo02.dkfz.de:306207$$pVDB
000306207 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000306207 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000306207 9141_ $$y2025
000306207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000306207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000306207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000306207 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000306207 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
000306207 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000306207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000306207 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000306207 980__ $$ajournal
000306207 980__ $$aVDB
000306207 980__ $$aI:(DE-He78)E130-20160331
000306207 980__ $$aUNRESTRICTED