000306207 001__ 306207 000306207 005__ 20251212115818.0 000306207 0247_ $$2doi$$a10.1016/j.ejso.2025.111174 000306207 0247_ $$2pmid$$apmid:41240795 000306207 0247_ $$2ISSN$$a0748-7983 000306207 0247_ $$2ISSN$$a1532-2157 000306207 037__ $$aDKFZ-2025-02436 000306207 041__ $$aEnglish 000306207 082__ $$a610 000306207 1001_ $$aBrandenburg, Johanna M$$b0 000306207 245__ $$aSurgical workflow analysis for Surgomics and context-aware assistance in robot-assisted minimally invasive esophagectomy (RAMIE): a retrospective, single-arm, multicenter annotation and machine learning study. 000306207 260__ $$aBurlington, Mass.$$bHarcourt$$c2026 000306207 3367_ $$2DRIVER$$aarticle 000306207 3367_ $$2DataCite$$aOutput Types/Journal article 000306207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765537076_396855 000306207 3367_ $$2BibTeX$$aARTICLE 000306207 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000306207 3367_ $$00$$2EndNote$$aJournal Article 000306207 500__ $$aVolume 52, Issue 1, January 2026, 111174 000306207 520__ $$aRobot-assisted minimally invasive esophagectomy (RAMIE) is a complex procedure that may benefit from workflow analysis for context-aware assistance and surgical data science. This study aimed to model the RAMIE workflow, validate the applicability of the obtained workflow model in the operating room (OR) and retrospectively assess its generalizability across three academic centers using video data and automated workflow analysis with machine learning (ML).A RAMIE workflow model was developed based on currently available literature, participatory OR observation, and expert interviews. This model was formalized to be included into a checklist tool to document the workflow live in the OR. To investigate generalizability of the workflow model, the surgical phases of 36 RAMIE videos from three different academic hospitals were retrospectively annotated. Based on this data set, a ML model was trained and tested within a six-fold cross validation.Ten surgical phases with 60 underlying steps were identified for RAMIE. The applicability of the workflow model was validated with live documentation in the OR. Multicenter video annotations revealed significant inter-institutional differences in the duration of all ten RAMIE phases. The ML model for automatic phase recognition showed an accuracy of 0.872 ± 0.091 and an f1-score of 0.872 ± 0.082 over all videos. The center with the best performing videos achieved a mean accuracy of 0.919 ± 0.036.The RAMIE workflow was successfully modeled and validated in a retrospective multicenter setting. Despite high variability in phase duration between surgical centers, ML-based phase recognition achieved highly promising results. 000306207 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000306207 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000306207 650_7 $$2Other$$aArtificial intelligence 000306207 650_7 $$2Other$$aMachine learning 000306207 650_7 $$2Other$$aPrecision medicine 000306207 650_7 $$2Other$$aRobot-assisted surgery 000306207 650_7 $$2Other$$aSurgical data science 000306207 650_7 $$2Other$$aSurgomics 000306207 7001_ $$aSchulze, André$$b1 000306207 7001_ $$aJenke, Alexander C$$b2 000306207 7001_ $$aBhasker, Nithya$$b3 000306207 7001_ $$aBleser, Noelle$$b4 000306207 7001_ $$aJunger, Denise$$b5 000306207 7001_ $$aStern, Antonia$$b6 000306207 7001_ $$aRivoir, Dominik$$b7 000306207 7001_ $$aNaderi, Hamid$$b8 000306207 7001_ $$aFritz-Kebede, Fleur$$b9 000306207 7001_ $$aBurgert, Oliver$$b10 000306207 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b11$$udkfz 000306207 7001_ $$aMündermann, Lars$$b12 000306207 7001_ $$aBodenstedt, Sebastian$$b13 000306207 7001_ $$aSpeidel, Stefanie$$b14 000306207 7001_ $$aLozanovski, Vladimir J$$b15 000306207 7001_ $$aGrimminger, Peter P$$b16 000306207 7001_ $$aBilleter, Adrian$$b17 000306207 7001_ $$aKlotz, Rosa$$b18 000306207 7001_ $$aWeitz, Jürgen$$b19 000306207 7001_ $$aDistler, Marius$$b20 000306207 7001_ $$aMüller-Stich, Beat P$$b21 000306207 7001_ $$aWagner, Martin$$b22 000306207 773__ $$0PERI:(DE-600)2002481-2$$a10.1016/j.ejso.2025.111174$$gVol. 52, no. 1, p. 111174 -$$n1$$p111174$$tEuropean journal of surgical oncology$$v52$$x0748-7983$$y2026 000306207 909CO $$ooai:inrepo02.dkfz.de:306207$$pVDB 000306207 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ 000306207 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000306207 9141_ $$y2025 000306207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20 000306207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20 000306207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20 000306207 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20 000306207 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20 000306207 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20 000306207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20 000306207 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0 000306207 980__ $$ajournal 000306207 980__ $$aVDB 000306207 980__ $$aI:(DE-He78)E130-20160331 000306207 980__ $$aUNRESTRICTED