001     306550
005     20251212133104.0
024 7 _ |a 10.1073/pnas.2505510122
|2 doi
024 7 _ |a pmid:41284889
|2 pmid
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
037 _ _ |a DKFZ-2025-02615
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Shang, Fuwei
|0 P:(DE-He78)8379c86250c50c0537999a6576e18aa7
|b 0
|e First author
|u dkfz
245 _ _ |a Multipotent progenitors with distinct origins, clonal lineage fates, transcriptomes, and surface markers yield two hematopoietic trees.
260 _ _ |a Washington, DC
|c 2025
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765542613_396854
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:D110#LA:D110#
520 _ _ |a Multipotent progenitors (MPP) are the quantitative source of native hematopoiesis that have been thought to be replenished slowly by hematopoietic stem cells (HSC). However, recent fate mapping studies have revealed two developmentally distinct populations of MPP, HSC-derived MPP (hMPP), and HSC-independent, embryonic MPP (eMPP). These data raise fundamental questions on the distinctions and functions of these progenitors. Here, we mapped the clonal dynamics of the two independent MPP systems, using in situ barcoding, and barcode linkage (hMPP), or disconnect (eMPP), with HSC. The cumulative output of eMPP to hematopoiesis was 35%, and their output was enriched for lymphoid fates. Conversely, hMPP output was enriched for myeloid-restricted fates. Distinguishing HSC from eMPP outputs revealed that only ~15% of adult HSC clones underwent multilineage differentiation (lymphoid, myeloid, and erythroid). To prospectively identify eMPP, we developed PolySMART for joint profiling of PolyloxExpress RNA barcodes, surface markers, and transcriptomes, and we found that the plasma cell marker CD138 enriches for eMPP. CD138+ MPP are primed for self-renewal and toward lymphoid fate, and become largely but not completely replaced by CD138- MPP over time, which may contribute to the loss of lymphoid output with age. Taken together, adult hematopoiesis consists of two distinct lineage trees. The source of the 'eMPP tree' substantially contributes to hematopoiesis before it declines, while the HSC-hMPP tree supplies hematopoiesis life-long. Our molecular determinants distinguishing the two MPP systems may open avenues to further explore these unexpected layers of hematopoiesis.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a barcoding
|2 Other
650 _ 7 |a fate mapping
|2 Other
650 _ 7 |a layers of hematopoiesis
|2 Other
650 _ 7 |a stem and progenitor cells
|2 Other
650 _ 7 |a surface marker identification
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Hematopoietic Stem Cells: cytology
|2 MeSH
650 _ 2 |a Hematopoietic Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Cell Lineage
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Multipotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Multipotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Hematopoiesis: physiology
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Biomarkers: metabolism
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
700 1 _ |a Nizharadze, Tamar
|0 P:(DE-He78)3f7fa2db8bbc27a20c1a1b404e334778
|b 1
|u dkfz
700 1 _ |a Thiele, Robin
|0 P:(DE-He78)bd6d637754018029a917097fd6a08ea6
|b 2
|u dkfz
700 1 _ |a Cirovic, Branko
|0 P:(DE-He78)b1cc9c3971aa3a67bf5a96b7ba55d3e5
|b 3
|u dkfz
700 1 _ |a Frank, Larissa Johanna
|0 P:(DE-He78)39a49c469ce7484849bd199f19bb1aae
|b 4
|u dkfz
700 1 _ |a Busch, Katrin
|0 P:(DE-He78)6695811f3270b3dbe3d06842e2ca55cd
|b 5
|u dkfz
700 1 _ |a Pei, Weike
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Feyerabend, Thorsten
|0 P:(DE-He78)ec832b560b08e92bd09a1ad2bbe702dc
|b 7
|u dkfz
700 1 _ |a Höfer, Thomas
|0 P:(DE-He78)9dbe272aaadbdc810ab0bb291eae428e
|b 8
|u dkfz
700 1 _ |a Wang, Xi
|b 9
700 1 _ |a Rodewald, Hans-Reimer
|0 P:(DE-He78)86fa3316b7be0d661065d02b3baec3d6
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1073/pnas.2505510122
|g Vol. 122, no. 48, p. e2505510122
|0 PERI:(DE-600)1461794-8
|n 48
|p e2505510122
|t Proceedings of the National Academy of Sciences of the United States of America
|v 122
|y 2025
|x 0027-8424
909 C O |p VDB
|o oai:inrepo02.dkfz.de:306550
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8379c86250c50c0537999a6576e18aa7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)3f7fa2db8bbc27a20c1a1b404e334778
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bd6d637754018029a917097fd6a08ea6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b1cc9c3971aa3a67bf5a96b7ba55d3e5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)39a49c469ce7484849bd199f19bb1aae
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)6695811f3270b3dbe3d06842e2ca55cd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)ec832b560b08e92bd09a1ad2bbe702dc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)9dbe272aaadbdc810ab0bb291eae428e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)86fa3316b7be0d661065d02b3baec3d6
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
920 2 _ |0 I:(DE-He78)D110-20160331
|k D110
|l Zelluläre Immunologie
|x 0
920 1 _ |0 I:(DE-He78)D110-20160331
|k D110
|l Zelluläre Immunologie
|x 0
920 1 _ |0 I:(DE-He78)B086-20160331
|k B086
|l B086 Modellierung Biol. Systeme
|x 1
920 0 _ |0 I:(DE-He78)D110-20160331
|k D110
|l Zelluläre Immunologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D110-20160331
980 _ _ |a I:(DE-He78)B086-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21