000306705 001__ 306705
000306705 005__ 20251203145426.0
000306705 0247_ $$2doi$$a10.1016/j.ejso.2025.111174
000306705 0247_ $$2ISSN$$a0748-7983
000306705 0247_ $$2ISSN$$a1532-2157
000306705 037__ $$aDKFZ-2025-02695
000306705 082__ $$a610
000306705 1001_ $$0P:(DE-He78)541a0f99db58de06c28ced0ab019cd2d$$aBrandenburg, Johanna$$b0
000306705 245__ $$aSurgical workflow analysis for Surgomics and context-aware assistance in robot-assisted minimally invasive esophagectomy (RAMIE): a retrospective, single-arm, multicenter annotation and machine learning study
000306705 260__ $$aBurlington, Mass.$$bHarcourt$$c2026
000306705 3367_ $$2DRIVER$$aarticle
000306705 3367_ $$2DataCite$$aOutput Types/Journal article
000306705 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764753107_1331673
000306705 3367_ $$2BibTeX$$aARTICLE
000306705 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000306705 3367_ $$00$$2EndNote$$aJournal Article
000306705 520__ $$aIntroductionRobot-assisted minimally invasive esophagectomy (RAMIE) is a complex procedure that may benefit from workflow analysis for context-aware assistance and surgical data science. This study aimed to model the RAMIE workflow, validate the applicability of the obtained workflow model in the operating room (OR) and retrospectively assess its generalizability across three academic centers using video data and automated workflow analysis with machine learning (ML).MethodsA RAMIE workflow model was developed based on currently available literature, participatory OR observation, and expert interviews. This model was formalized to be included into a checklist tool to document the workflow live in the OR. To investigate generalizability of the workflow model, the surgical phases of 36 RAMIE videos from three different academic hospitals were retrospectively annotated. Based on this data set, a ML model was trained and tested within a six-fold cross validation.ResultsTen surgical phases with 60 underlying steps were identified for RAMIE. The applicability of the workflow model was validated with live documentation in the OR. Multicenter video annotations revealed significant inter-institutional differences in the duration of all ten RAMIE phases. The ML model for automatic phase recognition showed an accuracy of 0.872 ± 0.091 and an f1-score of 0.872 ± 0.082 over all videos. The center with the best performing videos achieved a mean accuracy of 0.919 ± 0.036.ConclusionThe RAMIE workflow was successfully modeled and validated in a retrospective multicenter setting. Despite high variability in phase duration between surgical centers, ML-based phase recognition achieved highly promising results.
000306705 536__ $$0G:(GEPRIS)390696704$$aDFG project G:(GEPRIS)390696704 - EXC 2050: Centre for Tactile Internet with Human-in-the-Loop (CeTI) (390696704)$$c390696704$$x0
000306705 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x1
000306705 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de
000306705 7001_ $$00000-0001-7551-8566$$aSchulze, André$$b1
000306705 7001_ $$0P:(DE-He78)c2ea3fc4e18ec924b975ab72bf843cf0$$aJenke, Alexander$$b2
000306705 7001_ $$0P:(DE-He78)b8f8a58104bd0a33476d22e910776983$$aBhasker, Nithya$$b3
000306705 7001_ $$0P:(DE-He78)6bde455d857c421a232031d71718be20$$aBleser, Noelle$$b4
000306705 7001_ $$00000-0002-7895-3210$$aJunger, Denise$$b5
000306705 7001_ $$0P:(DE-HGF)0$$aStern, Antonia$$b6
000306705 7001_ $$0P:(DE-He78)4f73f9f27caf14ebfb851220147c7235$$aRivoir, Dominik$$b7
000306705 7001_ $$00009-0002-7589-3109$$aNaderi, Hamid$$b8
000306705 7001_ $$00000-0002-9005-6766$$aFritz-Kebede, Fleur$$b9
000306705 7001_ $$00000-0001-7118-4730$$aBurgert, Oliver$$b10
000306705 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b11$$udkfz
000306705 7001_ $$0P:(DE-HGF)0$$aMündermann, Lars$$b12
000306705 7001_ $$0P:(DE-He78)7e1dc3bb70d3108f5a58a20d7fc75981$$aBodenstedt, Sebastian$$b13
000306705 7001_ $$0P:(DE-He78)191434cf815e27a18a86287bacc2d496$$aSpeidel, Stefanie$$b14
000306705 7001_ $$00000-0002-7332-3973$$aLozanovski, Vladimir J.$$b15
000306705 7001_ $$00000-0002-1859-9213$$aGrimminger, Peter P.$$b16
000306705 7001_ $$00000-0001-8724-4793$$aBilleter, Adrian$$b17
000306705 7001_ $$00000-0003-4123-261X$$aKlotz, Rosa$$b18
000306705 7001_ $$0P:(DE-HGF)0$$aWeitz, Jürgen$$b19
000306705 7001_ $$00000-0002-3164-5755$$aDistler, Marius$$b20
000306705 7001_ $$0P:(DE-HGF)0$$aMüller-Stich, Beat P.$$b21
000306705 7001_ $$0P:(DE-He78)c68bcd9fdce315f09d37310dc10833a3$$aWagner, Martin$$b22$$eCorresponding author
000306705 773__ $$0PERI:(DE-600)2002481-2$$a10.1016/j.ejso.2025.111174$$gVol. 52, no. 1, p. 111174 -$$n1$$p111174 - 111184$$tEuropean journal of surgical oncology$$v52$$x0748-7983$$y2026
000306705 8564_ $$uhttps://doi.org/10.1016/j.ejso.2025.111174
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)541a0f99db58de06c28ced0ab019cd2d$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c2ea3fc4e18ec924b975ab72bf843cf0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b8f8a58104bd0a33476d22e910776983$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6bde455d857c421a232031d71718be20$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000306705 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karl Storz$$b6
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4f73f9f27caf14ebfb851220147c7235$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000306705 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karl Storz$$b12
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7e1dc3bb70d3108f5a58a20d7fc75981$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)191434cf815e27a18a86287bacc2d496$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b19$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-3164-5755$$aDeutsches Krebsforschungszentrum$$b20$$kDKFZ
000306705 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c68bcd9fdce315f09d37310dc10833a3$$aDeutsches Krebsforschungszentrum$$b22$$kDKFZ
000306705 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000306705 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000306705 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000306705 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000306705 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000306705 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
000306705 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000306705 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000306705 9201_ $$0I:(DE-He78)DD06-20160331$$kDD06$$lNCT DD Translationale Chirurgische Onkologie$$x0
000306705 980__ $$ajournal
000306705 980__ $$aUSER
000306705 980__ $$aVDBRELEVANT
000306705 980__ $$aI:(DE-He78)DD06-20160331