001     306705
005     20251203145426.0
024 7 _ |a 10.1016/j.ejso.2025.111174
|2 doi
024 7 _ |a 0748-7983
|2 ISSN
024 7 _ |a 1532-2157
|2 ISSN
037 _ _ |a DKFZ-2025-02695
082 _ _ |a 610
100 1 _ |a Brandenburg, Johanna
|0 P:(DE-He78)541a0f99db58de06c28ced0ab019cd2d
|b 0
245 _ _ |a Surgical workflow analysis for Surgomics and context-aware assistance in robot-assisted minimally invasive esophagectomy (RAMIE): a retrospective, single-arm, multicenter annotation and machine learning study
260 _ _ |a Burlington, Mass.
|c 2026
|b Harcourt
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764753107_1331673
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a IntroductionRobot-assisted minimally invasive esophagectomy (RAMIE) is a complex procedure that may benefit from workflow analysis for context-aware assistance and surgical data science. This study aimed to model the RAMIE workflow, validate the applicability of the obtained workflow model in the operating room (OR) and retrospectively assess its generalizability across three academic centers using video data and automated workflow analysis with machine learning (ML).MethodsA RAMIE workflow model was developed based on currently available literature, participatory OR observation, and expert interviews. This model was formalized to be included into a checklist tool to document the workflow live in the OR. To investigate generalizability of the workflow model, the surgical phases of 36 RAMIE videos from three different academic hospitals were retrospectively annotated. Based on this data set, a ML model was trained and tested within a six-fold cross validation.ResultsTen surgical phases with 60 underlying steps were identified for RAMIE. The applicability of the workflow model was validated with live documentation in the OR. Multicenter video annotations revealed significant inter-institutional differences in the duration of all ten RAMIE phases. The ML model for automatic phase recognition showed an accuracy of 0.872 ± 0.091 and an f1-score of 0.872 ± 0.082 over all videos. The center with the best performing videos achieved a mean accuracy of 0.919 ± 0.036.ConclusionThe RAMIE workflow was successfully modeled and validated in a retrospective multicenter setting. Despite high variability in phase duration between surgical centers, ML-based phase recognition achieved highly promising results.
536 _ _ |a DFG project G:(GEPRIS)390696704 - EXC 2050: Centre for Tactile Internet with Human-in-the-Loop (CeTI) (390696704)
|0 G:(GEPRIS)390696704
|c 390696704
|x 0
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: inrepo02.dkfz.de
700 1 _ |a Schulze, André
|0 0000-0001-7551-8566
|b 1
700 1 _ |a Jenke, Alexander
|0 P:(DE-He78)c2ea3fc4e18ec924b975ab72bf843cf0
|b 2
700 1 _ |a Bhasker, Nithya
|0 P:(DE-He78)b8f8a58104bd0a33476d22e910776983
|b 3
700 1 _ |a Bleser, Noelle
|0 P:(DE-He78)6bde455d857c421a232031d71718be20
|b 4
700 1 _ |a Junger, Denise
|0 0000-0002-7895-3210
|b 5
700 1 _ |a Stern, Antonia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rivoir, Dominik
|0 P:(DE-He78)4f73f9f27caf14ebfb851220147c7235
|b 7
700 1 _ |a Naderi, Hamid
|0 0009-0002-7589-3109
|b 8
700 1 _ |a Fritz-Kebede, Fleur
|0 0000-0002-9005-6766
|b 9
700 1 _ |a Burgert, Oliver
|0 0000-0001-7118-4730
|b 10
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 11
|u dkfz
700 1 _ |a Mündermann, Lars
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Bodenstedt, Sebastian
|0 P:(DE-He78)7e1dc3bb70d3108f5a58a20d7fc75981
|b 13
700 1 _ |a Speidel, Stefanie
|0 P:(DE-He78)191434cf815e27a18a86287bacc2d496
|b 14
700 1 _ |a Lozanovski, Vladimir J.
|0 0000-0002-7332-3973
|b 15
700 1 _ |a Grimminger, Peter P.
|0 0000-0002-1859-9213
|b 16
700 1 _ |a Billeter, Adrian
|0 0000-0001-8724-4793
|b 17
700 1 _ |a Klotz, Rosa
|0 0000-0003-4123-261X
|b 18
700 1 _ |a Weitz, Jürgen
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Distler, Marius
|0 0000-0002-3164-5755
|b 20
700 1 _ |a Müller-Stich, Beat P.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wagner, Martin
|0 P:(DE-He78)c68bcd9fdce315f09d37310dc10833a3
|b 22
|e Corresponding author
773 _ _ |a 10.1016/j.ejso.2025.111174
|g Vol. 52, no. 1, p. 111174 -
|0 PERI:(DE-600)2002481-2
|n 1
|p 111174 - 111184
|t European journal of surgical oncology
|v 52
|y 2026
|x 0748-7983
856 4 _ |u https://doi.org/10.1016/j.ejso.2025.111174
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)541a0f99db58de06c28ced0ab019cd2d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c2ea3fc4e18ec924b975ab72bf843cf0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b8f8a58104bd0a33476d22e910776983
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)6bde455d857c421a232031d71718be20
910 1 _ |a Karl Storz
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)4f73f9f27caf14ebfb851220147c7235
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)26a1176cd8450660333a012075050072
910 1 _ |a Karl Storz
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)7e1dc3bb70d3108f5a58a20d7fc75981
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)191434cf815e27a18a86287bacc2d496
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 0000-0002-3164-5755
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)c68bcd9fdce315f09d37310dc10833a3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
920 1 _ |0 I:(DE-He78)DD06-20160331
|k DD06
|l NCT DD Translationale Chirurgische Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a USER
980 _ _ |a VDBRELEVANT
980 _ _ |a I:(DE-He78)DD06-20160331


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21