001     306869
005     20251210120039.0
024 7 _ |a 10.1093/noajnl/vdaf159
|2 doi
024 7 _ |a pmid:40746948
|2 pmid
024 7 _ |a pmc:PMC12311925
|2 pmc
037 _ _ |a DKFZ-2025-02846
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Taylor, Aaron Michael
|0 0000-0002-2544-5888
|b 0
245 _ _ |a A feasibility study of enzymatic methylation sequencing of cell-free DNA from cerebrospinal fluid of pediatric central nervous system tumor patients for molecular classification.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765291912_2845852
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Array-based DNA methylation profiling is the gold standard for central nervous system (CNS) tumor molecular classification, but requires over 100 ng input DNA from surgical tissue. Cell-free tumor DNA (cfDNA) in cerebrospinal fluid (CSF) offers an alternative for diagnosis and disease monitoring. This study aimed to test the utilization of enzymatic DNA methylation sequencing (EM-seq) methods to overcome input DNA limitations.We used the NEBNext EM-seq v2 kit on various amounts of cfDNA, as low as 0.1 ng, extracted from archival CSF samples of 10 patients with CNS tumors. Tumor classification was performed via MNP-Flex using CpG sites overlapping those on the MethylationEPIC array.EM-seq provided sufficient genomic coverage for 10 and 1 ng input DNA samples to generate global DNA methylation profiles. Samples with 0.1 ng input showed lower coverage due to read duplication. Methylation levels for CpG sites with at least 5× coverage were highly correlated across various input DNA amounts, indicating that lower input cfDNA can still be used for tumor classification. The MNP-Flex classifier, trained on tissue DNA methylation data, successfully predicted CNS tumor types for 7 out of 10 CSF samples using EM-seq methylation data with only 1 ng of input cfDNA, consistent with diagnoses based on tissue MethylationEPIC classification and/or histopathology. Additionally, we detected focal and arm-level copy number alterations previously identified via clinical cytogenetics of tumor tissue.This study demonstrated the feasibility of CNS tumor molecular classification based on CSF using the EM-seq approach, and establishes potential sample quality limitations for future studies.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CNS tumor classification
|2 Other
650 _ 7 |a MNP-flex
|2 Other
650 _ 7 |a cell-free DNA
|2 Other
650 _ 7 |a enzymatic methylation sequencing
|2 Other
650 _ 7 |a molecular diagnosis
|2 Other
700 1 _ |a Lombardi, Jody T
|b 1
700 1 _ |a Patel, Areeba Jamilkhan
|0 P:(DE-He78)79506056c05e539af84edf040f0a93ad
|b 2
|u dkfz
700 1 _ |a Tamariz, Ariella
|b 3
700 1 _ |a Martin, Jonathan
|0 0000-0003-3180-2084
|b 4
700 1 _ |a Bookland, Markus J
|0 0000-0003-4422-8376
|b 5
700 1 _ |a Hersh, David S
|0 0000-0003-1177-2201
|b 6
700 1 _ |a Cantor, Evan
|0 0000-0001-7302-9734
|b 7
700 1 _ |a Song, Xianyuan
|b 8
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 9
|u dkfz
700 1 _ |a Ng, Patrick Kwok-Shing
|0 0000-0003-0364-7443
|b 10
700 1 _ |a Gell, Joanna J
|b 11
700 1 _ |a Lau, Ching C
|0 0000-0001-9173-8366
|b 12
773 _ _ |a 10.1093/noajnl/vdaf159
|g Vol. 7, no. 1, p. vdaf159
|0 PERI:(DE-600)3009682-0
|n 1
|p vdaf159
|t Neuro-oncology advances
|v 7
|y 2025
|x 2632-2498
909 C O |o oai:inrepo02.dkfz.de:306869
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)79506056c05e539af84edf040f0a93ad
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOL ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21