000307300 001__ 307300
000307300 005__ 20260128092413.0
000307300 0247_ $$2doi$$a10.1038/s41746-025-02227-4
000307300 0247_ $$2pmid$$apmid:41407878
000307300 037__ $$aDKFZ-2025-02986
000307300 041__ $$aEnglish
000307300 082__ $$a610
000307300 1001_ $$aCarstens, Matthias$$b0
000307300 245__ $$aArtificial intelligence for surgical scene understanding: a systematic review and reporting quality meta-analysis.
000307300 260__ $$a[Basingstoke]$$bMacmillan Publishers Limited$$c2026
000307300 3367_ $$2DRIVER$$aarticle
000307300 3367_ $$2DataCite$$aOutput Types/Journal article
000307300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769588613_275548
000307300 3367_ $$2BibTeX$$aARTICLE
000307300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000307300 3367_ $$00$$2EndNote$$aJournal Article
000307300 500__ $$a volume 9, Article number: 59 (2026)
000307300 520__ $$aSurgical scene understanding (SSU) uses artificial intelligence (AI) to interpret visual data from surgeries, such as laparoscopic videos. Despite promising foundational research on instrument and anatomy recognition, clinical adoption remains minimal. This systematic review and meta-analysis (PROSPERO: CRD420251005301) evaluates current SSU research in minimally invasive abdominal surgery, focusing on data curation, model design, validation, reporting standards, and clinical relevance. A total of 188 studies were reviewed. Most relied on small, single-center datasets (70.7%), primarily laparoscopic cholecystectomies (59.0%), reflecting an overall narrow topical breadth. Validation practices were often weak, rarely involving external datasets (10.1%) or clinical experts. Few studies addressed clinical translation (5.9%), model performance variability estimation (38.3%), or made code available (29.8%). Overall, limited progress toward clinical integration has been made over the past decade. Our findings highlight the need for diverse, multi-institutional datasets, robust validation practices, and clinically driven development to unlock the full potential of SSU in surgical practice.
000307300 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000307300 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000307300 7001_ $$aVasisht, Shubha$$b1
000307300 7001_ $$aZhang, Zheyuan$$b2
000307300 7001_ $$aBarbur, Iulia$$b3
000307300 7001_ $$0P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aReinke, Annika$$b4$$udkfz
000307300 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b5$$udkfz
000307300 7001_ $$aHashimoto, Daniel A$$b6
000307300 7001_ $$aKolbinger, Fiona R$$b7
000307300 773__ $$0PERI:(DE-600)2925182-5$$a10.1038/s41746-025-02227-4$$p59$$tnpj digital medicine$$v9$$x2398-6352$$y2026
000307300 909CO $$ooai:inrepo02.dkfz.de:307300$$pVDB
000307300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000307300 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000307300 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000307300 9141_ $$y2025
000307300 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ DIGIT MED : 2022$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:42:56Z
000307300 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:42:56Z
000307300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:42:56Z
000307300 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:42:56Z
000307300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNPJ DIGIT MED : 2022$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
000307300 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
000307300 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000307300 980__ $$ajournal
000307300 980__ $$aVDB
000307300 980__ $$aI:(DE-He78)E130-20160331
000307300 980__ $$aUNRESTRICTED