000307384 001__ 307384 000307384 005__ 20251223120207.0 000307384 0247_ $$2doi$$a10.1016/j.mcpro.2025.101492 000307384 0247_ $$2pmid$$apmid:41423049 000307384 0247_ $$2ISSN$$a1535-9476 000307384 0247_ $$2ISSN$$a1535-9484 000307384 037__ $$aDKFZ-2025-03028 000307384 041__ $$aEnglish 000307384 082__ $$a610 000307384 1001_ $$0P:(DE-He78)e82233886826e6243af5e60717e5fb8a$$aChen, Yannic$$b0$$eFirst author$$udkfz 000307384 245__ $$aBenchmarking Software for DDA-PASEF Immunopeptidomics. 000307384 260__ $$aBethesda, Md.$$bThe American Society for Biochemistry and Molecular Biology$$c2025 000307384 3367_ $$2DRIVER$$aarticle 000307384 3367_ $$2DataCite$$aOutput Types/Journal article 000307384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1766414804_3634860 000307384 3367_ $$2BibTeX$$aARTICLE 000307384 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000307384 3367_ $$00$$2EndNote$$aJournal Article 000307384 500__ $$a#EA:D191#LA:D191# / epub 000307384 520__ $$aMass spectrometry (MS) is the method of choice for high-throughput identification of immunopeptides, which are generated by intracellular proteases, unlike proteomics peptides that are typically derived from trypsin-digested proteins. Therefore, the searching space for immunopeptides is not limited by proteolytic specificity, requiring more sophisticated software algorithms to handle the increased complexity. Despite the widespread use of MS in immunopeptidomics, there is a lack of systematic evaluation of data processing software, making it challenging to identify the optimal solution. In this study, we provide a comprehensive benchmarking of the most widespread/used data-dependent acquisition (DDA)-based software platforms for immunopeptidomics: MaxQuant, FragPipe, PEAKS and MHCquant. The evaluation was conducted using data obtained from the JY cell line using the Thunder-DDA-PASEF method. We assessed each software's ability to identify immunopeptides and compared their identification confidence. Additionally, we examined potential biases in the results and tested the impact of database size on immunopeptide identification efficiency. Our findings demonstrate that all software platforms successfully identify the most prominent subset of immunopeptides with 1% false discovery rate (FDR) control, achieving medium to high identification confidence correlations. The largest number of immunopeptides were identified using the commercial PEAKS software, which is closely followed by FragPipe, making it a viable non-commercial alternative. However, we observed that larger database sizes negatively impacted the performance of some software platforms more than others. These results provide valuable insights into the strengths and limitations of current MS data processing tools for immunopeptidomics, supporting the immunopeptidomics/MS community in determining the right choice of software. 000307384 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0 000307384 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000307384 7001_ $$aPreikschat, Annica$$b1 000307384 7001_ $$0P:(DE-He78)7c776439971ef21f36ac730cfbff7fff$$aArnold, Annette$$b2$$udkfz 000307384 7001_ $$0P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127$$aPecori, Riccardo$$b3$$udkfz 000307384 7001_ $$0P:(DE-He78)4569ef2919d2438765ad71515f53646b$$aGomez-Zepeda, David$$b4$$udkfz 000307384 7001_ $$0P:(DE-He78)74e391c68d7926be83d679f3d8891e33$$aTenzer, Stefan$$b5$$eLast author$$udkfz 000307384 773__ $$0PERI:(DE-600)2071375-7$$a10.1016/j.mcpro.2025.101492$$gp. 101492 -$$pnn$$tMolecular & cellular proteomics$$vnn$$x1535-9476$$y2025 000307384 909CO $$ooai:inrepo02.dkfz.de:307384$$pVDB 000307384 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e82233886826e6243af5e60717e5fb8a$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000307384 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7c776439971ef21f36ac730cfbff7fff$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000307384 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000307384 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4569ef2919d2438765ad71515f53646b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000307384 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74e391c68d7926be83d679f3d8891e33$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000307384 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0 000307384 9141_ $$y2025 000307384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:13Z 000307384 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:13Z 000307384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:13Z 000307384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL CELL PROTEOMICS : 2022$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL CELL PROTEOMICS : 2022$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-27 000307384 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-27 000307384 9202_ $$0I:(DE-He78)D191-20160331$$kD191$$lHi-TRON Immunoproteomik$$x0 000307384 9200_ $$0I:(DE-He78)D191-20160331$$kD191$$lHi-TRON Immunoproteomik$$x0 000307384 9201_ $$0I:(DE-He78)D191-20160331$$kD191$$lHi-TRON Immunoproteomik$$x0 000307384 9201_ $$0I:(DE-He78)D150-20160331$$kD150$$lImmundiversität$$x1 000307384 980__ $$ajournal 000307384 980__ $$aVDB 000307384 980__ $$aI:(DE-He78)D191-20160331 000307384 980__ $$aI:(DE-He78)D150-20160331 000307384 980__ $$aUNRESTRICTED