001     307384
005     20251223120207.0
024 7 _ |a 10.1016/j.mcpro.2025.101492
|2 doi
024 7 _ |a pmid:41423049
|2 pmid
024 7 _ |a 1535-9476
|2 ISSN
024 7 _ |a 1535-9484
|2 ISSN
037 _ _ |a DKFZ-2025-03028
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Chen, Yannic
|0 P:(DE-He78)e82233886826e6243af5e60717e5fb8a
|b 0
|e First author
|u dkfz
245 _ _ |a Benchmarking Software for DDA-PASEF Immunopeptidomics.
260 _ _ |a Bethesda, Md.
|c 2025
|b The American Society for Biochemistry and Molecular Biology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1766414804_3634860
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:D191#LA:D191# / epub
520 _ _ |a Mass spectrometry (MS) is the method of choice for high-throughput identification of immunopeptides, which are generated by intracellular proteases, unlike proteomics peptides that are typically derived from trypsin-digested proteins. Therefore, the searching space for immunopeptides is not limited by proteolytic specificity, requiring more sophisticated software algorithms to handle the increased complexity. Despite the widespread use of MS in immunopeptidomics, there is a lack of systematic evaluation of data processing software, making it challenging to identify the optimal solution. In this study, we provide a comprehensive benchmarking of the most widespread/used data-dependent acquisition (DDA)-based software platforms for immunopeptidomics: MaxQuant, FragPipe, PEAKS and MHCquant. The evaluation was conducted using data obtained from the JY cell line using the Thunder-DDA-PASEF method. We assessed each software's ability to identify immunopeptides and compared their identification confidence. Additionally, we examined potential biases in the results and tested the impact of database size on immunopeptide identification efficiency. Our findings demonstrate that all software platforms successfully identify the most prominent subset of immunopeptides with 1% false discovery rate (FDR) control, achieving medium to high identification confidence correlations. The largest number of immunopeptides were identified using the commercial PEAKS software, which is closely followed by FragPipe, making it a viable non-commercial alternative. However, we observed that larger database sizes negatively impacted the performance of some software platforms more than others. These results provide valuable insights into the strengths and limitations of current MS data processing tools for immunopeptidomics, supporting the immunopeptidomics/MS community in determining the right choice of software.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Preikschat, Annica
|b 1
700 1 _ |a Arnold, Annette
|0 P:(DE-He78)7c776439971ef21f36ac730cfbff7fff
|b 2
|u dkfz
700 1 _ |a Pecori, Riccardo
|0 P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127
|b 3
|u dkfz
700 1 _ |a Gomez-Zepeda, David
|0 P:(DE-He78)4569ef2919d2438765ad71515f53646b
|b 4
|u dkfz
700 1 _ |a Tenzer, Stefan
|0 P:(DE-He78)74e391c68d7926be83d679f3d8891e33
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.mcpro.2025.101492
|g p. 101492 -
|0 PERI:(DE-600)2071375-7
|p nn
|t Molecular & cellular proteomics
|v nn
|y 2025
|x 1535-9476
909 C O |o oai:inrepo02.dkfz.de:307384
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e82233886826e6243af5e60717e5fb8a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)7c776439971ef21f36ac730cfbff7fff
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)a8b399fa71eacddc353846ca1d9d2127
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4569ef2919d2438765ad71515f53646b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)74e391c68d7926be83d679f3d8891e33
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:49:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:49:13Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:49:13Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL CELL PROTEOMICS : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL CELL PROTEOMICS : 2022
|d 2024-12-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
920 2 _ |0 I:(DE-He78)D191-20160331
|k D191
|l Hi-TRON Immunoproteomik
|x 0
920 0 _ |0 I:(DE-He78)D191-20160331
|k D191
|l Hi-TRON Immunoproteomik
|x 0
920 1 _ |0 I:(DE-He78)D191-20160331
|k D191
|l Hi-TRON Immunoproteomik
|x 0
920 1 _ |0 I:(DE-He78)D150-20160331
|k D150
|l Immundiversität
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D191-20160331
980 _ _ |a I:(DE-He78)D150-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21