000307433 001__ 307433
000307433 005__ 20260112114101.0
000307433 0247_ $$2doi$$a10.1093/oncolo/oyaf385
000307433 0247_ $$2pmid$$apmid:41429572
000307433 0247_ $$2ISSN$$a1083-7159
000307433 0247_ $$2ISSN$$a2159-8401
000307433 0247_ $$2ISSN$$a1549-490X
000307433 037__ $$aDKFZ-2025-03032
000307433 041__ $$aEnglish
000307433 082__ $$a610
000307433 1001_ $$aGromke, Tanja$$b0
000307433 245__ $$aClinical and radiomics parameter prognostication in metastatic uveal melanoma patients treated with hepatic arterial infusion chemotherapy.
000307433 260__ $$aOxford$$bOxford University Press$$c2026
000307433 3367_ $$2DRIVER$$aarticle
000307433 3367_ $$2DataCite$$aOutput Types/Journal article
000307433 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768214432_251405
000307433 3367_ $$2BibTeX$$aARTICLE
000307433 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000307433 3367_ $$00$$2EndNote$$aJournal Article
000307433 500__ $$a Volume 31, Issue 1, January 2026, oyaf385, Published:22 December 2025
000307433 520__ $$aMetastatic uveal melanoma (MUM) has a poor prognosis, but hepatic arterial infusion chemotherapy (HAIC) may improve outcomes in patients with hepatic metastases. To identify reliable prognostic factors for patient stratification and treatment allocation, we analyzed the clinical and imaging data from a large single-center cohort using machine learning (ML) models.Pre- and post first treatment clinical data of 235 patients with MUM treated with HAIC between 2009 and 2019 were retrospectively analyzed using Cox regression to identify prognostic factors for overall survival (OS) and time to change treatment strategy (TTCS). Furthermore, ML models were trained on clinical and computed tomography (CT) data for endpoint prediction.Pre-treatment multivariate analysis identified elevated lactate dehydrogenase (LDH) (OS: 6.5 vs. 16.4 months, hazard ratio (HR)=1.87, p = 0.006) and gamma-glutamyl transpeptidase (GGT) (OS: 7.6 vs. 16.4 months, HR = 1.67, p = 0.012) as prognostic factors for inferior OS. Decreased albumin (TTCS: 1.3 vs. 6.1 months, HR = 6.26, p < 0.001) and elevated LDH (TTCS: 2.9 vs. 7.6 months, HR = 1.72, p = 0.011) and alanine aminotransferase (ALT) (TTCS: 3.7 vs. 6.4 months, HR = 1.65, p = 0.004) predicted shorter TTCS. Scoring enhanced the power of the prognosticators for OS and TTCS. Post first treatment multivariate analysis emphasized the importance of inflammation management and liver protection. ML models incorporating radiomics features from base line CT imaging were not superior to models based on pre-treatment clinical data alone.We identified independent but synergistic prognostic factors for outcome stratification to guide treatment decisions and optimize patient management. ML-based radiomics features did not significantly enhance prognostic performance.
000307433 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000307433 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000307433 650_7 $$2Other$$ahepatic arterial infusion chemotherapy
000307433 650_7 $$2Other$$aindependent prognostic factors
000307433 650_7 $$2Other$$amachine learning
000307433 650_7 $$2Other$$ametastatic uveal melanoma
000307433 650_7 $$2Other$$amultivariate analysis
000307433 650_7 $$2Other$$aradiomics
000307433 7001_ $$0P:(DE-HGF)0$$aDurand, Juliane$$b1
000307433 7001_ $$aMueller, Tamara T$$b2
000307433 7001_ $$aNeumaier, Felix$$b3
000307433 7001_ $$0P:(DE-He78)8beb35b06813228facaf18709ea6af50$$aLiffers, Sven T$$b4$$udkfz
000307433 7001_ $$aRichly, Heike$$b5
000307433 7001_ $$aGrubert, Matthias$$b6
000307433 7001_ $$aHaubold, Johannes$$b7
000307433 7001_ $$aTheysohn, Jens$$b8
000307433 7001_ $$aKalkavan, Halime$$b9
000307433 7001_ $$aBechrakis, Nikolaos E$$b10
000307433 7001_ $$0P:(DE-HGF)0$$aSchuler, Martin$$b11
000307433 7001_ $$0P:(DE-He78)7fbcd1948be66c0952e842deae7f63fb$$aBraren, Rickmer$$b12
000307433 7001_ $$0P:(DE-HGF)0$$aSchaarschmidt, Benedikt M$$b13
000307433 7001_ $$0P:(DE-He78)026e0a55b968f360a3c349689ce8a99c$$aSiveke, Jens T$$b14$$udkfz
000307433 773__ $$0PERI:(DE-600)2023829-0$$a10.1093/oncolo/oyaf385$$gp. oyaf385$$n1$$poyaf385$$tThe oncologist$$v31$$x1083-7159$$y2026
000307433 909CO $$ooai:inrepo02.dkfz.de:307433$$pVDB
000307433 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000307433 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8beb35b06813228facaf18709ea6af50$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000307433 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000307433 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7fbcd1948be66c0952e842deae7f63fb$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000307433 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000307433 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)026e0a55b968f360a3c349689ce8a99c$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000307433 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000307433 9141_ $$y2025
000307433 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:36:48Z
000307433 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:36:48Z
000307433 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:36:48Z
000307433 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bONCOLOGIST : 2022$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bONCOLOGIST : 2022$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-09
000307433 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-09
000307433 9201_ $$0I:(DE-He78)ED01-20160331$$kED01$$lDKTK Koordinierungsstelle Essen/Düsseldorf$$x0
000307433 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK Koordinierungsstelle München$$x1
000307433 980__ $$ajournal
000307433 980__ $$aVDB
000307433 980__ $$aI:(DE-He78)ED01-20160331
000307433 980__ $$aI:(DE-He78)MU01-20160331
000307433 980__ $$aUNRESTRICTED