001     307575
005     20260110120407.0
024 7 _ |a 10.2967/jnumed.125.270906
|2 doi
024 7 _ |a pmid:41506801
|2 pmid
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
037 _ _ |a DKFZ-2026-00070
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kessler, Lukas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Prognostic Value of Fibroblast Activation Protein-Directed PET Imaging in Pleural Mesothelioma.
260 _ _ |a New York, NY
|c 2026
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767968424_3737039
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #DKTKZFB9# / #NCTZFB26# / epub
520 _ _ |a High expression of fibroblast activation protein (FAP) has been associated with inferior survival in several tumor entities. Novel 68Ga-radiolabeled FAP inhibitors (68Ga-FAPIs) allow noninvasive measurement of FAP, which enables the development of prognostic imaging parameters from 68Ga-FAPI PET/CT. In this study, we compared the prognostic value of 68Ga-FAPI-46 with 18F-FDG PET in a cohort of patients with malignant pleural mesothelioma from the FAPI PET observational trial (NCT04571086). Methods: Between May 2020 and January 2024, 49 patients with suspected or proven malignant mesothelioma were recruited, 39 of whom were eligible for data analysis. All patients underwent 68Ga-FAPI-46 and 18F-FDG PET/CT less than 4 wk apart. Tumor burden was measured semiautomatically, and SUVmax, SUVmean, and volumetric parameters (metabolic tumor volume [MTV], total lesion glycolysis/total lesion fibroblast activation, and total tumor SUV) were calculated. The FAP immunoreactive score (IRS) was calculated for tumor samples from a subset of patients (n = 19). Overall survival and progression-free survival were assessed per revised mRECIST (version 1.1). Survival analyses were performed with univariate and multivariate Cox regression and with Kaplan-Meier curves for clinical and imaging parameters, stratified by median. Results: Univariate analysis showed significant survival differences for all volumetric parameters for 68Ga-FAPI-46 and 18F-FDG (e.g., 68Ga-FAPI-46 MTV, 262 d vs. 737 d; P = 0.008 vs. 18F-FDG MTV, 336 d vs. 760 d; P = 0.012). Multivariate analysis revealed that MTV was an independent prognostic marker for 68Ga-FAPI-46 (hazard ratio, 4.44; 95% CI, 1.20-16.43; P = 0.025) and 18F-FDG (hazard ratio, 7.01; 95% CI, 1.29-38.2; P = 0.024). Kaplan-Meier analysis of the FAP IRS found that a higher IRS was associated with poorer survival (438 d with an IRS of 0-3 vs. 1,076 d with an IRS of 4-12; P = 0.04), but no significant difference was observed in univariate and multivariate analyses. Conclusion: In this modest exploratory cohort of patients with malignant pleural mesothelioma, MTV determined by 68Ga-FAPI-46 and 18F-FDG PET/CT had similar prognostic value, and high MTV was an independent risk factor. 68Ga-FAPI-46 not only complements a diagnostic work-up but also provides prognostic value and could offer alternative theranostic strategies for these patients.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a FAPI
|2 Other
650 _ 7 |a cancer imaging
|2 Other
650 _ 7 |a fibroblast activation protein
|2 Other
650 _ 7 |a mesothelioma
|2 Other
650 _ 7 |a theranostic
|2 Other
700 1 _ |a Schwaning, Felix
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Metzenmacher, Martin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pabst, Kim M
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Opitz, Marcel
|b 4
700 1 _ |a Wiesweg, Marcel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Aigner, Clemens
|b 6
700 1 _ |a Ploenes, Till
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Boeloekbas, Servet
|b 8
700 1 _ |a Doerr, Fabian
|b 9
700 1 _ |a Stuschke, Martin
|b 10
700 1 _ |a Umutlu, Lale
|b 11
700 1 _ |a Nader, Michael
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Theegarten, Dirk
|b 13
700 1 _ |a Eberhardt, Wilfried E
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Schuler, Martin
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Herrmann, Ken
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Fendler, Wolfgang P
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kersting, David
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Hautzel, Hubertus
|0 P:(DE-HGF)0
|b 19
773 _ _ |a 10.2967/jnumed.125.270906
|g p. jnumed.125.270906 -
|0 PERI:(DE-600)2040222-3
|p nn
|t Journal of nuclear medicine
|v nn
|y 2026
|x 0097-9058
909 C O |o oai:inrepo02.dkfz.de:307575
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2026
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2022
|d 2025-01-01
920 1 _ |0 I:(DE-He78)ED01-20160331
|k ED01
|l DKTK Koordinierungsstelle Essen/Düsseldorf
|x 0
920 1 _ |0 I:(DE-He78)WT01-20160331
|k WT01
|l Koordinierungsstelle NCT West
|x 1
920 1 _ |0 I:(DE-He78)DD04-20160331
|k DD04
|l Koordinierungsstelle NCT Dresden
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)ED01-20160331
980 _ _ |a I:(DE-He78)WT01-20160331
980 _ _ |a I:(DE-He78)DD04-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21