000307629 001__ 307629
000307629 005__ 20260114120432.0
000307629 0247_ $$2doi$$a10.1182/blood.2025029196
000307629 0247_ $$2pmid$$apmid:41525466
000307629 0247_ $$2ISSN$$a0006-4971
000307629 0247_ $$2ISSN$$a1528-0020
000307629 037__ $$aDKFZ-2026-00101
000307629 041__ $$aEnglish
000307629 082__ $$a610
000307629 1001_ $$aKwiatkowski, Janet L$$b0
000307629 245__ $$aLong-term efficacy and safety results of betibeglogene autotemcel gene therapy for transfusion-dependent β-thalassemia.
000307629 260__ $$aWashington, DC$$bAmerican Society of Hematology$$c2026
000307629 3367_ $$2DRIVER$$aarticle
000307629 3367_ $$2DataCite$$aOutput Types/Journal article
000307629 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768381647_731366
000307629 3367_ $$2BibTeX$$aARTICLE
000307629 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000307629 3367_ $$00$$2EndNote$$aJournal Article
000307629 500__ $$aepub
000307629 520__ $$aBetibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent β-thalassemia (TDT) involves autologous transplantation of hematopoietic stem and progenitor cells transduced with a modified β-globin gene to produce functional adult hemoglobin (HbAT87Q). Sixty-three participants with TDT (median [range] age: 17 [4-35] years) received beti-cel in phase 1/2 (n = 22) or phase 3 (n = 41) studies and enrolled in the long-term follow-up LTF-303 study (clinicaltrials.gov/NCT02633943; median [range] follow-up: 5.9 [2.9-10.1] years). Manufacturing refinements in phase 3 increased transduction efficiency, resulting in higher drug product vector copy number and HbAT87Q levels, which translated into higher hemoglobin and transfusion independence (TI) rates compared with phase 1/2. TI was achieved by 68.2% (15/22) of phase 1/2 participants (median weighted average Hb during TI, 10.2 g/dL) and 90.2% (37/41) of phase 3 participants (median, 11.2 g/dL) and was sustained through last follow-up. Treatment efficacy was similar across ages and TDT genotypes. Among participants achieving TI, 73% (38/52) had discontinued iron chelation at last follow-up, with no increase in liver iron concentration. Markers of ineffective erythropoiesis, including serum transferrin receptor and erythropoietin, improved with restoration of iron homeostasis. Health-related quality-of-life assessment scores showed durable improvements. No malignancies, insertional oncogenesis, or vector-derived replication-competent lentivirus were reported. These findings establish beti-cel as a durable, one-time therapy that achieves TI, restores iron balance, and improves quality of life, offering a potentially curative treatment option for people with TDT.
000307629 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000307629 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000307629 7001_ $$00000-0003-4961-8103$$aThompson, Alexis A$$b1
000307629 7001_ $$00000-0002-1851-7521$$aSchneiderman, Jennifer$$b2
000307629 7001_ $$aThuret, Isabelle$$b3
000307629 7001_ $$0P:(DE-He78)ca062b8db1ee864e03f0a92897728df3$$aKulozik, Andreas$$b4$$udkfz
000307629 7001_ $$aYannaki, Evangelia$$b5
000307629 7001_ $$00000-0002-0264-0891$$aCavazzana, Marina$$b6
000307629 7001_ $$aHongeng, Suradej$$b7
000307629 7001_ $$00000-0003-1288-1960$$aOlson, Timothy S$$b8
000307629 7001_ $$00009-0007-2151-8342$$aSauer, Martin G$$b9
000307629 7001_ $$aThrasher, Adrian J$$b10
000307629 7001_ $$aLal, Ashutosh$$b11
000307629 7001_ $$00000-0003-2975-807X$$aRasko, John Ej$$b12
000307629 7001_ $$aKunz, Joachim B$$b13
000307629 7001_ $$aKinney, Melissa A$$b14
000307629 7001_ $$aChawla, Anjulika$$b15
000307629 7001_ $$aAli, Shamshad$$b16
000307629 7001_ $$aTao, Ge$$b17
000307629 7001_ $$aThakar, Himal$$b18
000307629 7001_ $$aParamore, Clark$$b19
000307629 7001_ $$aWitthuhn, Niki$$b20
000307629 7001_ $$00000-0002-6515-4559$$aWalters, Mark C$$b21
000307629 7001_ $$00000-0002-7976-3654$$aLocatelli, Franco$$b22
000307629 773__ $$0PERI:(DE-600)1468538-3$$a10.1182/blood.2025029196$$gp. blood.2025029196$$pnn$$tBlood$$vnn$$x0006-4971$$y2026
000307629 909CO $$ooai:inrepo02.dkfz.de:307629$$pVDB
000307629 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ca062b8db1ee864e03f0a92897728df3$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000307629 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000307629 9141_ $$y2026
000307629 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBLOOD : 2022$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
000307629 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bBLOOD : 2022$$d2024-12-30
000307629 9201_ $$0I:(DE-He78)A400-20160331$$kA400$$lKKE Pädiatrische Leukämie$$x0
000307629 980__ $$ajournal
000307629 980__ $$aVDB
000307629 980__ $$aI:(DE-He78)A400-20160331
000307629 980__ $$aUNRESTRICTED