001     308493
005     20260119142654.0
024 7 _ |a 10.1016/j.ccell.2025.12.012
|2 doi
024 7 _ |a pmid:41544627
|2 pmid
024 7 _ |a 1535-6108
|2 ISSN
024 7 _ |a 1878-3686
|2 ISSN
037 _ _ |a DKFZ-2026-00133
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bernardi, Flavia
|b 0
245 _ _ |a Multiomic integration reveals tumoral heterogeneity of lipid dependence within lethal group 3 medulloblastoma.
260 _ _ |a Cambridge, Mass.
|c 2026
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768829147_2109350
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #DKTKZFB26# / #NCTZFB26# / epub
520 _ _ |a Medulloblastoma, the most common malignant brain tumor of childhood, exhibits significant biological complexity that demands deeper exploration. Here, we present a large multiomics dataset integrating data from 384 primary medulloblastoma patient samples across five omic layers: CpG methylome, transcriptome, proteome, phosphoproteome, and metabolome, paired with associated clinical metadata. Data integration revealed intertumoral heterogeneity of lipid metabolism across proteomic subtypes. Notably, while the MYC-FASN-SCD axis drives lipid biosynthesis, pathway inhibition elicits a compensatory escape mechanism in vivo through exogenous fatty acid uptake. Unexpectedly, we demonstrated that MYC triggers lipid storage, creating a unique dependency on lipid droplet-mitochondria communications to sustain tumor maintenance in vivo. Together, this comprehensive analysis reveals a targetable vulnerability downstream of MYC that constitutes a promising therapeutic approach to treat currently untreatable medulloblastoma subtypes.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a lipid biosynthesis
|2 Other
650 _ 7 |a lipid droplets
|2 Other
650 _ 7 |a lipid oxidative stress
|2 Other
650 _ 7 |a medulloblastoma
|2 Other
650 _ 7 |a metabolomics
|2 Other
650 _ 7 |a multiomics integration
|2 Other
650 _ 7 |a pediatric cancer
|2 Other
650 _ 7 |a phosphoproteomics
|2 Other
650 _ 7 |a proteomics
|2 Other
650 _ 7 |a transcriptomics
|2 Other
700 1 _ |a Torrejon, Jacob
|b 1
700 1 _ |a Basili, Irene
|b 2
700 1 _ |a Van Ommeren, Randy
|b 3
700 1 _ |a Marsaud, Véronique
|b 4
700 1 _ |a Yu, Hua
|b 5
700 1 _ |a Talbot, Julie
|b 6
700 1 _ |a Souphron, Judith
|b 7
700 1 _ |a Indersie, Emilie
|b 8
700 1 _ |a Forget, Antoine
|b 9
700 1 _ |a Bonneau, Benjamin
|b 10
700 1 _ |a Massiot, Alexane
|b 11
700 1 _ |a Alcazar, Coralie
|b 12
700 1 _ |a Figeac, Laurine
|b 13
700 1 _ |a Bonerandi, Emma
|b 14
700 1 _ |a Cancila, Gabriele
|b 15
700 1 _ |a Sirbu, Olga
|b 16
700 1 _ |a Yadav, Navneesh
|b 17
700 1 _ |a Mohanakrishnan, Dinesh
|b 18
700 1 _ |a Lombard, Bérangère
|b 19
700 1 _ |a Loew, Damarys
|b 20
700 1 _ |a Poullet, Patrick
|b 21
700 1 _ |a Liva, Stephane
|b 22
700 1 _ |a Lovino, Marta
|b 23
700 1 _ |a Lin, I-Hsuan
|b 24
700 1 _ |a Nakashima, Takuma
|b 25
700 1 _ |a Gharsalli, Tarek
|b 26
700 1 _ |a Nicolas, Paul Antoine
|b 27
700 1 _ |a Yubuki, Naoji
|b 28
700 1 _ |a Ribas, Roberto A
|b 29
700 1 _ |a Colsch, Benoit
|b 30
700 1 _ |a Chu-Van, Emeline
|b 31
700 1 _ |a Castelli, Florence
|b 32
700 1 _ |a Sampaio, Julio Lopes
|b 33
700 1 _ |a Leboucher, Sophie
|b 34
700 1 _ |a Lasgi, Charlene
|b 35
700 1 _ |a Besse, Laetitia
|b 36
700 1 _ |a Soler, Marie-Noëlle
|b 37
700 1 _ |a Lo Re, Valentina
|b 38
700 1 _ |a Planque, Nathalie
|b 39
700 1 _ |a Abeysundara, Namal
|b 40
700 1 _ |a Balin, Polina
|b 41
700 1 _ |a Wang, Hao
|b 42
700 1 _ |a Su, Haipeng
|b 43
700 1 _ |a Wu, Xiaochong
|b 44
700 1 _ |a Cavalli, Florence M G
|b 45
700 1 _ |a Saulnier, Olivier
|b 46
700 1 _ |a Ficarra, Elisa
|b 47
700 1 _ |a Di Marcotullio, Lucia
|b 48
700 1 _ |a Kumegawa, Kohei
|b 49
700 1 _ |a Maruyama, Reo
|b 50
700 1 _ |a Kawauchi, Daisuke
|b 51
700 1 _ |a Picard, Daniel
|b 52
700 1 _ |a Remke, Marc
|b 53
700 1 _ |a Riffaud, Laurent
|b 54
700 1 _ |a Puiseux, Chloé
|b 55
700 1 _ |a Bouchoucha, Yassine
|b 56
700 1 _ |a Huybrechts, Sophie
|b 57
700 1 _ |a Simbozel, Marie
|b 58
700 1 _ |a Bourdeaut, Franck
|b 59
700 1 _ |a Varlet, Pascale
|b 60
700 1 _ |a Puget, Stéphanie
|b 61
700 1 _ |a Blauwblomme, Thomas
|b 62
700 1 _ |a Andrianteranagna, Mamy
|b 63
700 1 _ |a Planchon, Julien Masliah
|b 64
700 1 _ |a Dugourd, Aurelien
|b 65
700 1 _ |a Saez-Rodriguez, Julio
|b 66
700 1 _ |a Barillot, Emmanuel
|b 67
700 1 _ |a Servant, Nicolas
|b 68
700 1 _ |a Martignetti, Loredana
|b 69
700 1 _ |a Rich, Jeremy
|b 70
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 71
|u dkfz
700 1 _ |a Pfister, Stefan M
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 72
|u dkfz
700 1 _ |a Agnihotri, Sameer
|b 73
700 1 _ |a Suzuki, Hiromichi
|b 74
700 1 _ |a Fanjul, Marjorie
|b 75
700 1 _ |a Wang, Won-Jing
|b 76
700 1 _ |a Tsai, Jin-Wu
|b 77
700 1 _ |a Sun, Ramon C
|b 78
700 1 _ |a Beccaria, Kévin
|b 79
700 1 _ |a Dufour, Christelle
|b 80
700 1 _ |a Sarry, Jean-Emmanuel
|b 81
700 1 _ |a Michealraj, Kulandaimanuvel Antony
|b 82
700 1 _ |a Taylor, Michael D
|b 83
700 1 _ |a Ayrault, Olivier
|b 84
773 _ _ |a 10.1016/j.ccell.2025.12.012
|g p. S153561082500546X
|0 PERI:(DE-600)2074034-7
|p nn
|t Cancer cell
|v nn
|y 2026
|x 1535-6108
909 C O |p VDB
|o oai:inrepo02.dkfz.de:308493
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 71
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 72
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER CELL : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a IF >= 50
|0 StatID:(DE-HGF)9950
|2 StatID
|b CANCER CELL : 2022
|d 2024-12-20
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)HD02-20160331
|k HD02
|l Koordinierungsstelle NCT Heidelberg
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)HD02-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21