001     308513
005     20260120150317.0
024 7 _ |a 10.1242/dev.204794
|2 doi
024 7 _ |a pmid:41552968
|2 pmid
024 7 _ |a 0022-0752
|2 ISSN
024 7 _ |a 0950-1991
|2 ISSN
024 7 _ |a 1477-9129
|2 ISSN
037 _ _ |a DKFZ-2026-00153
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Udayakumar, Aiswarya
|b 0
245 _ _ |a Toll signalling controls intestinal regeneration in Drosophila.
260 _ _ |a Cambridge
|c 2026
|b The Company of Biologists
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1768917784_2403642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The intestinal interphase is where epithelial renewal and tissue maintenance are balanced alongside immunological regulation. How these functions integrate with cellular signalling is under investigation. Here, we studied the role of the evolutionarily conserved innate immune Toll/NF-κB pathway in Drosophila intestinal regeneration. We found that the core components of the canonical Toll pathway were necessary for intestinal stem cell (ISC) mitosis in homeostasis and upon infection. Toll activation was sufficient to push ISCs into mitosis and the enteroblast (EB) fate, but blocked EB differentiation resulting in ISC and EB accumulation. This was mediated by JNK and Akt/TOR signalling. When JNKK, JNK, Akt or TOR activity was reduced in gut progenitors, ISC mitosis was suppressed. Toll activation also triggered suppression of antimicrobial lysozyme and amidase genes, which led to increased gut bacterial density. Our results identify Toll as necessary and sufficient for ISC mitosis. Our model is that the Toll pathway acts as a regulator of the intestinal landscape integrating JNK and Akt signals to achieve gut tissue renewal and control of commensal bacteria density.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Drosophila
|2 Other
650 _ 7 |a Gut
|2 Other
650 _ 7 |a Intestinal stem cells
|2 Other
650 _ 7 |a Toll
|2 Other
650 _ 7 |a Drosophila Proteins
|2 NLM Chemicals
650 _ 7 |a Toll-Like Receptors
|2 NLM Chemicals
650 _ 7 |a Tl protein, Drosophila
|2 NLM Chemicals
650 _ 7 |a Proto-Oncogene Proteins c-akt
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a NF-kappa B
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Drosophila Proteins: metabolism
|2 MeSH
650 _ 2 |a Drosophila Proteins: genetics
|2 MeSH
650 _ 2 |a Toll-Like Receptors: metabolism
|2 MeSH
650 _ 2 |a Toll-Like Receptors: genetics
|2 MeSH
650 _ 2 |a Intestines: physiology
|2 MeSH
650 _ 2 |a Intestines: cytology
|2 MeSH
650 _ 2 |a Regeneration: physiology
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Mitosis
|2 MeSH
650 _ 2 |a Stem Cells: cytology
|2 MeSH
650 _ 2 |a Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Drosophila melanogaster: physiology
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Proto-Oncogene Proteins c-akt: metabolism
|2 MeSH
650 _ 2 |a NF-kappa B: metabolism
|2 MeSH
700 1 _ |a Stavropoulos, Filippos
|b 1
700 1 _ |a Hadjipanteli, Theodosia
|b 2
700 1 _ |a Peng, Guofan
|b 3
700 1 _ |a Bahuguna, Shivohum
|0 P:(DE-He78)582b21baed2b53ae5b83b739471a6828
|b 4
|u dkfz
700 1 _ |a MacClay, Caitlin
|b 5
700 1 _ |a Lee, Jeffrey Y
|b 6
700 1 _ |a Xiao, Qi
|b 7
700 1 _ |a Xia, Yuxian
|b 8
700 1 _ |a Boutros, Michael
|0 P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad
|b 9
|u dkfz
700 1 _ |a Zhou, Jun
|b 10
700 1 _ |a Apidianakis, Yiorgos
|b 11
700 1 _ |a Pitsouli, Chrysoula
|b 12
700 1 _ |a Ligoxygakis, Petros
|0 0000-0002-9498-9993
|b 13
773 _ _ |a 10.1242/dev.204794
|g Vol. 153, no. 2, p. dev204794
|0 PERI:(DE-600)2007916-3
|n 2
|p dev204794
|t Development
|v 153
|y 2026
|x 0022-0752
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)582b21baed2b53ae5b83b739471a6828
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2026
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DEVELOPMENT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)B110-20160331
|k B110
|l B110 Signalwege funktionelle Genomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21