001     308544
005     20260129155728.0
024 7 _ |a 10.1016/j.media.2026.103945
|2 doi
024 7 _ |a pmid:41564633
|2 pmid
024 7 _ |a 1361-8415
|2 ISSN
024 7 _ |a 1361-8431
|2 ISSN
024 7 _ |a 1361-8423
|2 ISSN
037 _ _ |a DKFZ-2026-00170
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rueckert, Tobias
|b 0
245 _ _ |a Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge.
260 _ _ |a Amsterdam [u.a.]
|c 2026
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769698602_582793
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #NCTZFB26#
520 _ _ |a Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Instrument instance segmentation
|2 Other
650 _ 7 |a Instrument keypoint estimation
|2 Other
650 _ 7 |a Robot-assisted surgery
|2 Other
650 _ 7 |a Surgical phase recognition
|2 Other
700 1 _ |a Rauber, David
|b 1
700 1 _ |a Maerkl, Raphaela
|b 2
700 1 _ |a Klausmann, Leonard
|b 3
700 1 _ |a Yildiran, Suemeyye R
|b 4
700 1 _ |a Gutbrod, Max
|b 5
700 1 _ |a Nunes, Danilo Weber
|b 6
700 1 _ |a Moreno, Alvaro Fernandez
|b 7
700 1 _ |a Luengo, Imanol
|b 8
700 1 _ |a Stoyanov, Danail
|b 9
700 1 _ |a Toussaint, Nicolas
|b 10
700 1 _ |a Cho, Enki
|b 11
700 1 _ |a Kim, Hyeon Bae
|b 12
700 1 _ |a Choo, Oh Sung
|b 13
700 1 _ |a Kim, Ka Young
|b 14
700 1 _ |a Kim, Seong Tae
|b 15
700 1 _ |a Arantes, Gonçalo
|b 16
700 1 _ |a Song, Kehan
|b 17
700 1 _ |a Zhu, Jianjun
|b 18
700 1 _ |a Xiong, Junchen
|b 19
700 1 _ |a Lin, Tingyi
|b 20
700 1 _ |a Kikuchi, Shunsuke
|b 21
700 1 _ |a Matsuzaki, Hiroki
|b 22
700 1 _ |a Kouno, Atsushi
|b 23
700 1 _ |a Manesco, João Renato Ribeiro
|b 24
700 1 _ |a Papa, João Paulo
|b 25
700 1 _ |a Choi, Tae-Min
|b 26
700 1 _ |a Jeong, Tae Kyeong
|b 27
700 1 _ |a Park, Juyoun
|b 28
700 1 _ |a Alabi, Oluwatosin
|b 29
700 1 _ |a Wei, Meng
|b 30
700 1 _ |a Vercauteren, Tom
|b 31
700 1 _ |a Wu, Runzhi
|b 32
700 1 _ |a Xu, Mengya
|b 33
700 1 _ |a Wang, An
|b 34
700 1 _ |a Bai, Long
|b 35
700 1 _ |a Ren, Hongliang
|b 36
700 1 _ |a Yamlahi, Amine
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Hennighausen, Jakob
|0 P:(DE-He78)19525b4b76d116daa9394a3e4f6b7233
|b 38
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 39
700 1 _ |a Kondo, Satoshi
|b 40
700 1 _ |a Kasai, Satoshi
|b 41
700 1 _ |a Hirasawa, Kousuke
|b 42
700 1 _ |a Yang, Shu
|b 43
700 1 _ |a Wang, Yihui
|b 44
700 1 _ |a Chen, Hao
|b 45
700 1 _ |a Rodríguez, Santiago
|b 46
700 1 _ |a Aparicio, Nicolás
|b 47
700 1 _ |a Manrique, Leonardo
|b 48
700 1 _ |a Lyons, Juan Camilo
|b 49
700 1 _ |a Hosie, Olivia
|b 50
700 1 _ |a Ayobi, Nicolás
|b 51
700 1 _ |a Arbeláez, Pablo
|b 52
700 1 _ |a Li, Yiping
|b 53
700 1 _ |a Al Khalil, Yasmina
|b 54
700 1 _ |a Nasirihaghighi, Sahar
|b 55
700 1 _ |a Speidel, Stefanie
|0 P:(DE-He78)191434cf815e27a18a86287bacc2d496
|b 56
700 1 _ |a Rueckert, Daniel
|b 57
700 1 _ |a Feussner, Hubertus
|b 58
700 1 _ |a Wilhelm, Dirk
|b 59
700 1 _ |a Palm, Christoph
|b 60
773 _ _ |a 10.1016/j.media.2026.103945
|g Vol. 109, p. 103945 -
|0 PERI:(DE-600)1497450-2
|p 103945
|t Medical image analysis
|v 109
|y 2026
|x 1361-8415
909 C O |p VDB
|o oai:inrepo02.dkfz.de:308544
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 38
|6 P:(DE-He78)19525b4b76d116daa9394a3e4f6b7233
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 39
|6 P:(DE-He78)26a1176cd8450660333a012075050072
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 56
|6 P:(DE-He78)191434cf815e27a18a86287bacc2d496
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2026
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)DD04-20160331
|k DD04
|l Koordinierungsstelle NCT Dresden
|x 1
920 1 _ |0 I:(DE-He78)DD06-20160331
|k DD06
|l NCT DD Translationale Chirurgische Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)DD04-20160331
980 _ _ |a I:(DE-He78)DD06-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21