000309609 001__ 309609
000309609 005__ 20260202120628.0
000309609 0247_ $$2doi$$a10.1007/s00120-026-02778-8
000309609 0247_ $$2pmid$$apmid:41615435
000309609 0247_ $$2ISSN$$a2731-7064
000309609 0247_ $$2ISSN$$a2731-7072
000309609 037__ $$aDKFZ-2026-00259
000309609 041__ $$aGerman
000309609 082__ $$a610
000309609 1001_ $$aDuwe, G.$$b0
000309609 245__ $$aKünstliche Intelligenz in chirurgischen Disziplinen: Einsatz, Nutzen und Potenzial – ein Delphi-Expertenkonsensus.
000309609 260__ $$aNew York]$$bSpringer Medizin$$c2026
000309609 3367_ $$2DRIVER$$aarticle
000309609 3367_ $$2DataCite$$aOutput Types/Journal article
000309609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770021793_1557479
000309609 3367_ $$2BibTeX$$aARTICLE
000309609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000309609 3367_ $$00$$2EndNote$$aJournal Article
000309609 500__ $$aepub
000309609 520__ $$aArtificial intelligence (AI) in surgical disciplines has the potential to support all areas of patient care, with the goal of improving treatment quality and patient safety. A group of multidisciplinary experts discussed the current situation as well as steps required to successfully integrate AI into surgical disciplines in the context of a consensus conference at the second Digital Health Summit (Brandenburg an der Havel, Germany) in August 2024.A modified Delphi procedure was performed with 16 multidisciplinary physicians and scientists on the topic of AI in surgical disciplines and beyond. In two online meetings with subsequent Delphi survey rounds (LimeSurvey) and a final hybrid meeting, individual statements were contributed, discussed, and consented by all 16 participants based on current national clinical guidelines.From a total of 103 submitted statements, 36 statements on reality (n = 12), utopia (n = 13), and opportunities for digital transformation (n = 11) were consented after discussion and modification. We achieved a consensus of at least 75% for all the statements presented, with six of the statements achieving a strong consensus of 100% agreement.The consensus statements show the great potential of AI for improving patient care in surgical disciplines. Challenges such as the lack of digitalization structures and legal frameworks were identified, and practice-oriented proposals for implementation were developed. The need for multidisciplinary cooperation between medical professionals, politics, and industry was emphasized in order to facilitate the German healthcare system remaining competitive for the future, both nationally and internationally.
000309609 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000309609 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000309609 650_7 $$2Other$$aArtificial intelligence
000309609 650_7 $$2Other$$aDelphi consensus conference
000309609 650_7 $$2Other$$aDigitalization
000309609 650_7 $$2Other$$aLegal framework
000309609 650_7 $$2Other$$aSurgery
000309609 7001_ $$aMoench, K.$$b1
000309609 7001_ $$aKauth, V.$$b2
000309609 7001_ $$aAngeloni, M.$$b3
000309609 7001_ $$aEckhoff, J.$$b4
000309609 7001_ $$0P:(DE-He78)0f26d76d27427945f14f0e874d824aa6$$aGörtz, M.$$b5$$udkfz
000309609 7001_ $$aHoefert, S.$$b6
000309609 7001_ $$aKocar, T. D.$$b7
000309609 7001_ $$aKollitsch, L.$$b8
000309609 7001_ $$aMehralivand, S.$$b9
000309609 7001_ $$aMercier, D.$$b10
000309609 7001_ $$aRudolph, J.$$b11
000309609 7001_ $$aRueckel, J.$$b12
000309609 7001_ $$aSchönhof, R.$$b13
000309609 7001_ $$aSondermann, M.$$b14
000309609 7001_ $$avon Klot, Caj$$b15
000309609 7001_ $$aZamzow, A.$$b16
000309609 7001_ $$aStruck, J. P.$$b17
000309609 7001_ $$aBorgmann, H.$$b18
000309609 773__ $$0PERI:(DE-600)3123197-4$$a10.1007/s00120-026-02778-8$$pnn$$tDie Urologie$$vnn$$x2731-7064$$y2026
000309609 909CO $$ooai:inrepo02.dkfz.de:309609$$pVDB
000309609 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0f26d76d27427945f14f0e874d824aa6$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000309609 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000309609 9141_ $$y2026
000309609 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-11-11$$wger
000309609 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-11-11$$wger
000309609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bUROLOGIE : 2022$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-11-11
000309609 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-11-11
000309609 9201_ $$0I:(DE-He78)E250-20160331$$kE250$$lNWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms$$x0
000309609 980__ $$ajournal
000309609 980__ $$aVDB
000309609 980__ $$aI:(DE-He78)E250-20160331
000309609 980__ $$aUNRESTRICTED