000309611 001__ 309611
000309611 005__ 20260202120629.0
000309611 0247_ $$2doi$$a10.1007/s13205-026-04701-6
000309611 0247_ $$2pmid$$apmid:41613168
000309611 0247_ $$2pmc$$apmc:PMC12847620
000309611 0247_ $$2ISSN$$a2190-572X
000309611 0247_ $$2ISSN$$a2190-5738
000309611 037__ $$aDKFZ-2026-00261
000309611 041__ $$aEnglish
000309611 082__ $$a610
000309611 1001_ $$aKumar, Abhishek$$b0
000309611 245__ $$aDeciphering secondary metabolite potentials of halophilic marine-derived Aspergillus ruber.
000309611 260__ $$aHeidelberg$$bSpringer$$c2026
000309611 3367_ $$2DRIVER$$aarticle
000309611 3367_ $$2DataCite$$aOutput Types/Journal article
000309611 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770021748_1557475
000309611 3367_ $$2BibTeX$$aARTICLE
000309611 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000309611 3367_ $$00$$2EndNote$$aJournal Article
000309611 520__ $$aThe halophilic marine-derived fungus Aspergillus ruber CBS 135680 was systematically investigated for its secondary metabolite potential through genome mining. A total of 36 biosynthetic gene clusters (BGCs) were identified, including four non-ribosomal peptide synthetase (NRPS) clusters, eight NRPS-like clusters, eight type I polyketide synthase (T1PKS) clusters, ten terpene clusters, four hybrid clusters, and two siderophore clusters. The largest NRPS cluster (AruBGC2, ~ 58 kb) encodes the siderophore synthase SidC, while AruBGC23 was linked to asperfuranone biosynthesis. Additional clusters were predicted to synthesize bioactive compounds such as cornexistin, TAN-1612, naphthopyrone, clavaric acid, squalestatin S1, asperlactone, and epipyriculol. These metabolites are associated with diverse biological activities, including anticancer, antibacterial, antifungal, nematocidal, and herbicidal properties. The discovery of canonical and noncanonical BGCs pinpoints the metabolic diversity of A. ruber and highlights potential as a promising source of natural products. This study provides the first comprehensive genome-wide assessment of secondary metabolism in A. ruber, offering valuable insights for future drug discovery and biotechnological applications.The online version contains supplementary material available at 10.1007/s13205-026-04701-6.
000309611 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000309611 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000309611 650_7 $$2Other$$aAspergillus ruber CBS 135680
000309611 650_7 $$2Other$$aBiosynthetic gene clusters
000309611 650_7 $$2Other$$aHalophilic
000309611 650_7 $$2Other$$aMarine-derived genomics
000309611 7001_ $$aParveen, Alisha$$b1
000309611 7001_ $$aHansen, Frederik Teilfeldt$$b2
000309611 7001_ $$aSørensen, Jens Laurids$$b3
000309611 7001_ $$0P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc$$aBandapalli, Obul Reddy$$b4
000309611 7001_ $$aNeerathilingam, Muniasamy$$b5
000309611 7001_ $$aPrasad, Kumar Suranjit$$b6
000309611 773__ $$0PERI:(DE-600)2600522-0$$a10.1007/s13205-026-04701-6$$gVol. 16, no. 2, p. 84$$n2$$p84$$t3 Biotech$$v16$$x2190-572X$$y2026
000309611 909CO $$ooai:inrepo02.dkfz.de:309611$$pVDB
000309611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000309611 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000309611 9141_ $$y2026
000309611 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-09$$wger
000309611 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-09$$wger
000309611 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$b3 BIOTECH : 2022$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000309611 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
000309611 9201_ $$0I:(DE-He78)C050-20160331$$kC050$$lMolekular-Genetische Epidemiologie$$x0
000309611 980__ $$ajournal
000309611 980__ $$aVDB
000309611 980__ $$aI:(DE-He78)C050-20160331
000309611 980__ $$aUNRESTRICTED